Skip to main content

Advertisement

Log in

Primitive Tibetan antelope, Qurliqnoria hundesiensis (Lydekker, 1881) (Bovidae, Artiodactyla), from Pliocene Zanda and Kunlun Pass basins and paleoenvironmental implications

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Well adapted to extremely cold winters (hypothermia) and low oxygen (hypoxia), the Tibetan antelope (or chiru), Pantholops hodgsonii Abel, is an iconic species in the Tibetan Plateau. Its extinct relative, Qurliqnoria Bohlin, represents the earliest endemic Tibetan mammal going back to the late Miocene, suggesting a long process of adaptations within Tibetan Plateau for ~ 10 million years. We reexamine holotype materials of Q. hundesiensis (Lydekker) from the British Museum, originally discovered by British explorers in the Himalayas in the early 1800s, and new materials recently discovered in the Pliocene strata of Zanda Basin, southwestern Tibet. We refer additional horncore and dental materials from the Kunlun Pass Basin at 4,700–4,900 m asl, and leverage these new data to place Q. hundesiensis within modern biostratigraphic and paleoenvironmental frameworks. Although Qurliqnoria remains the best candidate of a distant sister-group of living Pantholops, the Pliocene representatives offer no sign of transitions to living chiru. We infer that the Qurliqnoria lineage has persisted throughout late Miocene and Pliocene of the Tibetan Plateau in a chronospecies succession, i.e., Q. cheni to Q. hundesiensis. The Pliocene Qurliqnoria probably did not directly give rise to Pantholops, suggesting that a direct ancestor of Pantholops is yet to be found. We discuss the paleoenvironmental and paleoelevational implications of the new Qurliqnoria materials and analysis for Tibetan Plateau faunal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

3D models of specimens described are available for download at https://www.morphosource.org/dashboard/collections/000434456/edit?locale=en& (see Material and method section).

References

  • Abel C (1826) On the supposed unicorn of the Himalayas. Phil Mag J 68:232-234

    Google Scholar 

  • Bärmann EV, Rössner G (2011) Dental nomenclature in Ruminantia: Towards a standard terminological framework. Mamm Biol 76:762-768

    Article  Google Scholar 

  • Batten JH (1838) Note of a visit to the Nítí pass of the grand Himálayan chain. J Asiatic Soc Bengal 7:310-316

    Google Scholar 

  • Bibi F (2013) A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol Biol 13:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohlin B (1937) Eine Tertiäre säugetier-fauna aus Tsaidam. Sino-Swedish Exped Publ 1:3-111

    Google Scholar 

  • Bouvrain G, Sen S, Thomas H (1994) Un nouveau genre d'Antilope dans le Miocene superieur de Sinap Tepe en Turquie. Rev Paléobiol Genève 13:375-380

    Google Scholar 

  • Buckland W (1823) Reliquiae Diluvianae; or, Observations on the Organic Remains Contained in Caves, Fissures, and Diluvial Gravel, and on Other Geological Phenomena, Attesting the Action of an Universal Deluge. John Murray, London

  • Buho H, Jiang Z, Liu C, Yoshida T, Mahamut H, Kaneko M, Asakawa M, Motokawa M, Kaji K, Wu X, Otaishi N, Ganzorig S, Masuda R (2011) Preliminary study on migration pattern of the Tibetan antelope (Pantholops hodgsonii) based on satellite tracking. Adv Space Res 48:43-48. https://doi.org/10.1016/j.asr.2011.02.015.

    Article  CAS  Google Scholar 

  • Calamari ZT (2021) Total evidence phylogenetic analysis supports new morphological synapomorphies for Bovidae (Mammalia, Artiodactyla). Am Mus Novitat 3970:1-38

    Google Scholar 

  • Chen L, Qiu Q, Jiang Y, Wang K, Lin Z, Li Z, Bibi F, Yang Y, Wang J, Nie W, Su W, Liu G, Li Q, Fu W, Pan X, Liu C, Yang J, Zhang C, Yin Y, Wang Y, Zhao Y, Zhang C, Wang Z, Qin Y, Liu W, Wang B, Ren Y, Zhang R, Zeng Y, da Fonseca RR, Wei B, Li R, Wan W, Zhao R, Zhu W, Wang Y, Duan S, Gao Y, Zhang YE, Chen C, Hvilsom C, Epps CW, Chemnick LG, Dong Y, Mirarab S, Siegismund HR, Ryder OA, Gilbert MTP, Lewin HA, Zhang G, Heller R, Wang W (2019) Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364:eaav6202. https://doi.org/10.1126/science.aav6202.

    Article  CAS  PubMed  Google Scholar 

  • Cui Z-j, Wu Y-q, Ge D-k, Liu G-n (1999) Environmental change of Kunlun Pass area since Quaternary. Marine Geol Quat Geol 19:53-62

    Google Scholar 

  • Cui Z-j, Wu Y-q, Liu G-n, Ge D-k, Pang Q-q, Xu Q-h (1998) The "Kunlun-Huanghe Movement". Sci China (Ser D) 28:53-59

    Google Scholar 

  • Deng T, Li Q, Tseng ZJ, Takeuchi GT, Wang Y, Xie G, Wang S, Hou S, Wang X (2012) Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance. Proc Nat Acad Sci 109:7374-7378 https://doi.org/10.1073/pnas.1201052109

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng T, Wang X, Fortelius M, Li Q, Wang Y, Tseng ZJ, Takeuchi GT, Saylor JE, Säilä LK, Xie G (2011) Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science 333:1285-1288 https://doi.org/10.1126/science.1206594

    Article  CAS  PubMed  Google Scholar 

  • Falconer H (1868) VII. On the fossil rhinoceros of central Tibet and its relation to recent upheaval of the Himalayahs. Palaeontological Memoirs and Notes of the Late Hugh Falconer, Volume 1, Fauna Antiqua Sivalensis 1:173-185

    Google Scholar 

  • Fang X-m, Zhang W-l, Meng Q-q, Gao J-p, Wang X-m, King J, Song C-h, Dai S, Miao Y-f (2007) High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet Sci Lett 258:293-306

    Article  CAS  Google Scholar 

  • Faurby S, Svenning J-C (2015) A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol Phyl Evol 84:14-26 https://doi.org/10.1016/j.ympev.2014.11.001

    Article  Google Scholar 

  • Ge R-L, Cai Q, Shen Y-Y, San A, Ma L, Zhang Y, Yi X, Chen Y, Yang L, Huang Y, He R, Hui Y, Hao M, Li Y, Wang B, Ou X, Xu J, Zhang Y, Wu K, Geng C, Zhou W, Zhou T, Irwin DM, Yang Y, Ying L, Bao H, Kim J, Larkin DM, Ma J, Lewin HA, Xing J, Platt RN, Ray DA, Auvil L, Capitanu B, Zhang X, Zhang G, Murphy RW, Wang J, Zhang Y-P, Wang J (2013) Draft genome sequence of the Tibetan antelope. Nat Commun 4:1858 https://doi.org/10.1038/ncomms2860

    Article  CAS  PubMed  Google Scholar 

  • Gentry AW (1968) The extinct bovid genus Qurliqnoria Bohlin. J Mammal 49:769

    Article  Google Scholar 

  • Gentry AW (1992) The subfamilies and tribes of the family Bovidae. Mamm Rev 22:1-32

    Article  Google Scholar 

  • Gentry AW (1994) The Miocene differentiation of Old World Pecora (Mammalia). Hist Biol 7:115-158

    Article  Google Scholar 

  • Gentry AW (2003) 15. Ruminantia (Artiodactyla). In: Fortelius M, Kappelman J, Sen S, Bernor RL (eds) Geology and Paleontology of the Miocene Sinap Formation, Turkey. Columbia University Press, New York, pp 332-379

    Google Scholar 

  • GeoMapApp (Version 3.6.14) (2021) Available from http://www.geomapapp.org Accessed in April 2015.

  • Google Earth Pro (Version 7.3.3.7786) (2020) Available from https://www.google.com/work/earthmaps/earthpro.html. Mountain View, CA: Google Inc. Accessed on December 24, 2021.

  • Gray JE (1821) On the natural arrangement of vertebrose animals. London Med Reposit 15:296-310

    Google Scholar 

  • Gustafson EP (2015) An early Pliocene North American deer: Bretzia pseudalces, its osteology, biology, and place in cervid history. Bull Mus Nat Hist Univ Oregon 25:1-75

    Google Scholar 

  • Hedin S (1922) Southern Tibet: Discoveries in Former Times Compared with My Own Researches in 1906–1908. Vol. IV, Kara-Korum and Chang-Tang. Lithographic Institute of the General Staff of the Swedish Army, Stockholm

  • Herbert JD (1831) On the organic remains found in the Himmalaya. Glean Sci 3:265-272

    Google Scholar 

  • Hodgson BH (1833) Further illustrations of the Antilope hodgsonii, Abel. Proc Zool Soc London 1:110-111

    Google Scholar 

  • Huang W-b, Ji H-x (1979) Discovery of Hipparion fauna in Xizang. Chin Sci Bull 24:885-888

    Article  Google Scholar 

  • Huang W-b, Ji H-x, Chen W-y, Hsu C-q, Zheng S-h (1980) Pliocene stratum of Guizhong and Bulong Basin, Xizang. In: Qinghai-Tibetan Plateau Comprehensive Scientific Investigation Team of Chinese Academy of Sciences (ed) Paleontology of Tibet, Part 1. Science Press, Beijing, pp 4–17

  • Ji H-x, Hsu C-q, Huang W-b (1980) The Hipparion fauna from Guizhong Basin, Xizang. In: Qinghai-Tibetan Plateau Comprehensive Scientific Investigation Team of Chinese Academy of Sciences (ed) Paleontology of Tibet, Part 1. Science Press, Beijing, pp 18–32

  • Kostopoulos DS, Erol AS, Mayda S, Yavuz AY, Tarhan E (2020) Qurliqnoria (Bovidae, Mammalia) from the Upper Miocene of Çorakyerler (Central Anatolia, Turkey) and its biogeographic implications. Palaeoworld 29:629-635 https://doi.org/10.1016/j.palwor.2019.10.003

    Article  Google Scholar 

  • Leslie DM, Schaller GB (2008) Pantholops hodgsonii. Mamm. Species 817: 1-13

    Article  Google Scholar 

  • Li F-l, Li D-l (1990) Latest Miocene Hipparion (Plesiohipparion) of Zanda Basin. In: Yang Z, Nie Z (eds) Paleontology of the Ngari Area, Tibet (Xi Zang). China University of Geological Science Press, Wuhan, pp 186-193

    Google Scholar 

  • Li Q, Stidham TA, Ni X, Li L (2017) Two new Pliocene hamsters (Cricetidae, Rodentia) from southwestern Tibet (China), and their implications for rodent dispersal ‘into Tibet’. J Vert Paleontol 37:e1403443 https://doi.org/10.1080/02724634.2017.1403443

    Article  Google Scholar 

  • Li Q, Wang X (2015) Into Tibet: An early Pliocene dispersal of fossil zokor (Rodentia: Spalacidae) from Mongolian Plateau to the hinterland of Tibetan Plateau. PLoS ONE 10:e0144993 https://doi.org/10.1371/journal.pone.0144993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Xie G-p, Takeuchi GT, Deng T, Tseng ZJ, Grohé C, Wang X (2014) Vertebrate fossils on the Roof of the World: Biostratigraphy and geochronology of high-elevation Kunlun Pass Basin, northern Tibetan Plateau, and basin history as related to the Kunlun strike-slip fault. Palaeogeog Palaeoclim Palaeoecol 411:46-55 https://doi.org/10.1016/j.palaeo.2014.06.029

    Article  Google Scholar 

  • Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. 1: Regnum animale. Editio decima, 1758. Societatis Zoologicae Germanicae, Stockholm

  • Lydekker R (1881) Observations on the ossiferous beds of Húndes in Tibet. Rec Geol Surv India 14:178-184

    Google Scholar 

  • Lydekker R (1901) On the skull of a chiru-like antelope from the ossiferous deposits of Hundes (Tibet). Quart J Geol Soc 57:289-292

    Article  Google Scholar 

  • Ma L, Shao X, Wang Y, Yang Y, Bai Z, Zhao Y, Jin G, Ga Q, Yang Q, Ge R-L (2014) Molecular cloning, characterization and expression of myoglobin in Tibetan antelope (Pantholops hodgsonii), a species with hypoxic tolerance. Gene 533:532-537 https://doi.org/10.1016/j.gene.2013.09.030

    Article  CAS  PubMed  Google Scholar 

  • Moorcroft W (1816) A journey to Lake Mánasaróvara in Ún-dés, a province of little Tibet. Asiatic Res 12:375-534

    Google Scholar 

  • Owen R (1848) Description of teeth and portions of jaws of two extinct anthracotherioid quadrupeds (Hyopotamus vectianus and Hyopotamus bovinus) discovered by the Marchioness of Hastings in the Eocene deposits on the N.W. coast of the Isle of Wight: with an attempt to develope Cuvier's idea of the classification of pachyderms by the number of their toes. Contrib Hist British Fossil Mamm (First Ser) Part VII:30–71

  • Owen R (1870) On fossil remains of mammals found in China. Quart J Geol Soc London 26:417-434

    Article  Google Scholar 

  • Ozansoy F (1957) Faunes de mammifères du Tertiaire de Turquie et leurs révisions stratigraphiques. Bull Mineral Res Expl Inst Turkey 49:29-48

    Google Scholar 

  • Ozansoy F (1965) Étude des gisements continentaux et des mammifères du Cénozoïque de Turquie. Mém Soc Géol France 44:1-92

    Google Scholar 

  • Pilgrim GE (1934) Two new species of sheeplike antelope from the Miocene of Mongolia. Am Mus Novit 716:1-29

    Google Scholar 

  • Pilgrim GE (1939) The fossil Bovidae of India. Palaeont Indica 26:1-356

    Google Scholar 

  • Qian F (1999) Study on magnetostratigraphy in Qinghai-Tibetan plateau in late Cenozoic. J Geomech 5:22-34

    Google Scholar 

  • Qian F, Ma X-h, Wu X-h, Pu Q-y (1982) Magnetostratigraphy of the Qiangtang and Quguo formations. In: Editorial Committee (ed) Collected Papers of Geology of the Qinghai-Tibetan Plateau. Geology Publishing House, Beijing, pp 121-130

    Google Scholar 

  • Qian F, Zhang J (1997) Study on the magnetic stratigraphy of the Qiangtang Formation and the neotectonism. J Geomech 3:50-56

    Google Scholar 

  • Qiu Z-x, Ye J, Jiang Y-j (1987) Some mammalian fossils of Bahe Stage from Wuzhong, Ningxia. Vert PalAsiat 25:46-56

    Google Scholar 

  • Rawling CG (1905) The Great Plateau. Being an Account of Exploration in Central Tibet, 1903, and of the Gartok Expedition, 1904–1905. London Edward Arnold

  • Rollins CK, Hall DM (1999) Using light and scanning electron microscopic methods to differentiate ibex goat and Tibetan antelope fibers. Textile Res J 69:856-860

    Article  CAS  Google Scholar 

  • Royle JF (1839) Illustrations of the Botany and Other Branches of the Natural History of the Himalayan Mountains, and of the Flora of Cashmere, Volume I. Wm. H. Allen and Co., London

    Google Scholar 

  • Saylor JE, Quade J, Dettman DL, DeCelles PG, Kapp PA, Ding L (2009) The late Miocene through present paleoelevation history of southwestern Tibet. Am J Sci 309:1-42.

    Article  CAS  Google Scholar 

  • Schaller GB (1996) Realm of the snow antelope. Nat Hist 1996:48-52

    Google Scholar 

  • Schaller GB (1998) Wildlife of the Tibetan Steppe. University of Chicago Press, Chicago, Illinois

    Google Scholar 

  • Schlosser M (1904) Die fossilen Cavicornier von Samos. Beitr Paläontol Geol Österreich-Ungarns Orients 17:28-118

    Google Scholar 

  • Sclater PL, Thomas O (1897) The Book of Antelopes, Vol. III. R. H. Porter, London

    Google Scholar 

  • Shen X, Tian Q, Ding G, Wei K, Chen Z, Chai C (2001) Late Cenozoic stratigraphic sequence and its implication to tectonic evolution, Hejiakouzi Area, Ningxia Hui Autonomous Region. Earthquake Res China 15:380-389

    Google Scholar 

  • Signore AV, Storz JF (2020) Biochemical pedomorphosis and genetic assimilation in the hypoxia adaptation of Tibetan antelope. Sci Adv 6:eabb5447 https://doi.org/10.1126/sciadv.abb5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AT, Xie Y (2013) Mammals of China. Priceton University Press, Princeton

    Book  Google Scholar 

  • Song B, Spicer RA, Zhang K, Ji J, Farnsworth A, Hughes AC, Yang Y, Han F, Xu Y, Spicer T, Shen T, Lunt DJ, Shi G (2020) Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth Planet Sci Lett 537:116175 https://doi.org/10.1016/j.epsl.2020.116175

    Article  CAS  Google Scholar 

  • Song C-h, Gao D-l, Fang X-m, Cui Z-j, Li J-j, Yang S-l, Jin H-b, Burbank DW, Kirschvink JL (2005) Late Cenozoic high-resolution magnetostratigraphy in the Kunlun Pass Basin and its implications for the uplift of the northern Tibetan Plateau. Chin Sci Bull 50:1912-1922

    Article  Google Scholar 

  • Strachey R (1851a) On the geology of part of the Himalaya Mountains and Tibet. Proc Geol Soc 7:292-310 https://doi.org/10.1144/GSL.JGS.1851.007.01-02.54

    Article  Google Scholar 

  • Strachey R (1851b) On the physical geography of the provinces of Kumáon and Garhwál in the Himálaya mountains, and of the adjoining parts of Tibet. J Roy Geog Soc London 21:57-85

    Google Scholar 

  • Tekkaya İ (1974) The Bovidae fauna of middle Sinap of Turkey. Bull Geol Soc Turkey 17:173-186

    Google Scholar 

  • Tian Q, Fang X, Bai Y, Chen C, Hou J, Zhang T (2021) An early Miocene lowland on the northeastern Tibetan Plateau. Frontiers Ear Sci 9:759319. https://doi.org/10.3389/feart.2021.759319

  • Tong H-w, Zhang B (2019) New fossils of Eucladoceros boulei (Artiodactyla, Mammalia) from Early Pleistocene Nihewan Beds, China. Palaeoworld 28:403-424

    Article  Google Scholar 

  • Traill GW (1832) Statistical report on the Bhotia Mehals of Kumaon. Asiatic Res 17:1-50

    Google Scholar 

  • Tseng ZJ, Li Q, Wang X (2013a) A new cursorial hyena from Tibet, and analysis of biostratigraphy, paleozoogeography, and dental morphology of Chasmaporthetes (Mammalia, Carnivora). J Vert Paleontol 33:1457-1471 https://doi.org/10.1080/02724634.2013.775142

    Article  Google Scholar 

  • Tseng ZJ, Wang X, Li Q, Xie G-p (2022) Qurliqnoria (Mammalia: Bovidae) fossils from Qaidam Basin, Tibetan Plateau and deep-time endemism of the Tibetan antelope lineage. Zool J Linnean Soc:1–23 https://doi.org/10.1093/zoolinnean/zlab117

  • Tseng ZJ, Wang X, Li Q, Xie G (2016) Pliocene bone-cracking Hyaeninae (Carnivora, Mammalia) from the Zanda Basin, Tibet Autonomous Region, China. Hist Biol 28:69-77

    Article  Google Scholar 

  • Tseng ZJ, Wang X, Slater GJ, Takeuchi GT, Li Q, Liu J, Xie G (2013b) Himalayan fossils of the oldest known pantherine establish ancient origin of big cats. Proc Royal Soc B 281:20132686 https://doi.org/10.1098/rspb.2013.2686

    Article  Google Scholar 

  • Vasileiadis N, Tsoukala E, Kostopoulos DS (2019) The late Miocene bovids from Platania (Drama Basin, Greece), with description of a new species of Palaeoryx. Geobios 55:57-76 https://doi.org/10.1016/j.geobios.2019.06.005

    Article  Google Scholar 

  • Wang N, Chang M-m (2010) Pliocene cyprinids (Cypriniformes, Teleostei) from Kunlun Pass Basin, northeastern Tibetan Plateau and their bearings on development of water system and uplift of the area. Sci China Earth Sci 53:485–500 https://doi.org/10.1007/s11430-010-0048-5

    Article  CAS  Google Scholar 

  • Wang N, Chang M-m (2012) Discovery of fossil Nemacheilids (Cypriniformes, Teleostei, Pisces) from the Tibetan Plateau, China. Sci China Earth Sci 55:714-727 https://doi.org/10.1007/s11430-012-4368-5

    Article  Google Scholar 

  • Wang S-Q, Yang Q, Zhao Y, Li C-X, Shi Q-Q, Zong L-Y, Ye J (2018) New Olonbulukia material and its related assemblage reveal an early radiation of stem Caprini along the north of the Tibetan Plateau. J Paleontol:1–13 https://doi.org/10.1017/jpa.2018.65

  • Wang S, Zhang W, Fang X, Dai S, Kempf O (2008a) Magnetostratigraphy of the Zanda basin in southwest Tibet Plateau and its tectonic implications. Chin Sci Bull 53:1393-1400

    Google Scholar 

  • Wang X, Flynn LJ, Fortelius M (2013a) Introduction. Toward a continental Asian biostratigraphic and geochronologic framework. In: Wang X, Flynn LJ, Fortelius M (eds) Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. Columbia University Press, New York, pp 1-25

    Chapter  Google Scholar 

  • Wang X, Jukar AM, Tseng ZJ, Li Q (2020a) Dragon bones from the heavens: European explorations and early palaeontology in Zanda Basin of Tibet, retracing type locality of Qurliqnoria hundesiensis and Hipparion (Plesiohipparion) zandaense. Hist Biol 33:1-11 https://doi.org/10.1080/08912963.2020.1777551

    Article  Google Scholar 

  • Wang X, Li Q, Takeuchi GT (2016). Out of Tibet: an early sheep from the Pliocene of Tibet, Protovis himalayensis, genus and species nov. (Bovidae, Caprini), and origin of Ice Age mountain sheep. J Vert Paleontol 36:e1169190 https://doi.org/10.1080/02724634.2016.1169190

    Article  Google Scholar 

  • Wang X, Li Q, Xie G-p, Saylor JE, Tseng ZJ, Takeuchi GT, Deng T, Wang Y, Hou S-k, Liu J, Zhang C-f, Wang N, Wu F-x (2013b) Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya. Palaeogeog Palaeoclim Palaeoecol 374:81-95 https://doi.org/10.1016/j.palaeo.2013.01.007

    Article  Google Scholar 

  • Wang X, Li Q, Xie G (2014a) Earliest record of Sinicuon in Zanda Basin, southern Tibet and implications for hypercarnivores in cold environments. Quat Int 355:3-10 https://doi.org/10.1016/j.quaint.2014.03.028

    Article  Google Scholar 

  • Wang X, Qiu Z-d, Li Q, Wang B-y, Qiu Z-x, Downs WR, Xie G-p, Xie J-y, Deng T, Takeuchi GT, Tseng ZJ, Chang M-m, Liu J, Wang Y, Biasatti D, Sun Z, Fang X, Meng Q (2007) Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeog Palaeoclim Palaeoecol 254:363-385

    Article  Google Scholar 

  • Wang X, Tseng ZJ, Li Q, Takeuchi GT, Xie G (2014b) From ‘third pole’ to north pole: a Himalayan origin for the arctic fox. Proc Royal Soc B 281:20140893 https://doi.org/10.1098/rspb.2014.0893

    Article  Google Scholar 

  • Wang X, Xie G-p, Li Q, Qiu Z-d, Tseng ZJ, Takeuchi GT, Wang B-y, Fortelius M, Rosenström-Fortelius A, Wahlquist H, Downs WR, Zhang C-f, Wang Y (2011) Early explorations of Qaidam Basin (Tibetan Plateau) by Birger Bohlin -- reconciling classic vertebrate fossil localities with modern biostratigraphy. Vert PalAsiat 49:285-310

    Google Scholar 

  • Wang Y, Passey B, Roy R, Deng T, Jiang S, Hannold C, Wang X, Lochner E, Tripati A (2020b) Clumped isotope thermometry of modern and fossil snail shells from the Himalayan-Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions. Geol Soc Am Bull 133:1370-1380 https://doi.org/10.1130/b35784.1

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Xu Y, Zhang C, Li Q, Tseng ZJ, Takeuchi GT, Deng T (2008b) Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: Paleo-climatic and paleo-elevation implications. Earth Planet Sci Lett 270:73-85

    Article  CAS  Google Scholar 

  • Wang Y, Xu Y, Khawaja S, Passey BH, Zhang C, Wang X, Li Q, Tseng ZJ, Takeuchi GT, Deng T, Xie G (2013c) Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleo-elevation implications. Earth Planet Sci Lett 376:43-53 https://doi.org/10.1016/j.epsl.2013.06.014

    Article  CAS  Google Scholar 

  • Zhang H-b, Li W-d, Liu Z-h (2003) Tibetan antelope (Pantholops hodgsoni). Chin J Zool 38:74

    CAS  Google Scholar 

  • Zhang Q-s, Wang F-b, Ji H-x, Huang W-b (1981) Pliocene stratigraphy of Zhada Basin, Tibet. J Stratigr 5:216-220

    Google Scholar 

Download references

Acknowledgements

We thank Narimane Chatar for help in laser-scanning the holotype of Qurliqnoria hundesiensis (BMNH M10888 and M10889) and Bea Santaella Luna for photographs of Pantholops hodgsonii in the USNM collection. Dimitris Kostopoulos has kindly provided photographs of several Turkish specimens. We greatly appreciate the assistance from Stuart White to digitally assemble the British Museum holotype specimens. Alan Zdinak made repairs to specimens described herein and Yanping Song helped with processing of images in Photoshop. We appreciate the detailed comments and suggestions by two anonymous reviewers and an associated editor at JME, which greatly improved our manuscript. We also thank Darin Croft, Editor in Chief of JME, for his guidance.

Field works would not be possible without the enthusiastic participations by team members and drivers, both Chinese and Tibetan, of our Zanda expeditions. We greatly appreciate their dedications and spirits of adventure. We thank Pip Brewer and Nadine Gabriel for access to the fossil mammal collection at the Natural History Museum, London.

Funding

Funding for fieldwork and travel are provided by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB26030304), CAS/SAFEA International Partnership Program for Creative Research Teams, Chinese National Natural Science Foundation (nos. 40702004 to Q.L., 40730210 to T. D., 49872011, 40128004), Chinese Academy of Science Outstanding Overseas Scholar Fund (KL205208), National Science Foundation (US) (EAR-0446699, 0444073, 0958704, 1227212 to X.W.), and National Geographic Society (no. W22-08 to Q.L.).

Author information

Authors and Affiliations

Authors

Contributions

XW, QL, and ZJT led the field works that collected the materials in this study. XW and ZJT collected and analyzed the data. XW drafted the manuscript. All authors discussed, revised, and reviewed the paper.

Corresponding authors

Correspondence to Xiaoming Wang or Z. Jack Tseng.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, Q. & Tseng, Z.J. Primitive Tibetan antelope, Qurliqnoria hundesiensis (Lydekker, 1881) (Bovidae, Artiodactyla), from Pliocene Zanda and Kunlun Pass basins and paleoenvironmental implications. J Mammal Evol 30, 245–268 (2023). https://doi.org/10.1007/s10914-022-09632-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-022-09632-6

Keywords

Navigation