Skip to main content

Advertisement

Log in

Paleoecological Inferences from Long Bone Microanatomical Specializations in Hippopotamoidea (Mammalia, Artiodactyla)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Hippopotamoids are herbivorous mammals that originated in the late middle Eocene. This taxon includes animals with a great variety of sizes and body proportions, from small and gracile forms with slender limbs to heavy massive ones. Many hippopotamoids have previously been considered semi-aquatic but recent studies have highlighted a diversity of ecologies. This study focuses on bone microanatomy, one of the various proxies that enable inferring the ecology of extinct taxa. The comparative analysis of the inner structure of the stylopod bones in various hippopotamoids, based on both transverse and longitudinal virtual sections, highlights a diversity of patterns and clarifies previously proposed hypotheses about the ecology of the sampled hippopotamoids. The filling of the medullary area by spongious deposits in the pygmy hippopotamus, Choeropsis liberiensis, appears associated with frequent incursions into the water by an animal that essentially forages in forests. The common hippopotamus, Hippopotamus amphibius, which spends most of the day submerged in water, shows a greater filling of the medullary area by spongious bone and a thicker cortex. These observations coupled with comparisons with diverse terrestrial and semi-aquatic mammals of various sizes confirm that semi-aquatic lifestyle and heavy weight-bearing are associated with similar microanatomical specializations causing an increase in bone mass. However, for a given mass, comparisons enable determining if an additional increase in bone compactness occurs, as in Hippopotamus amphibius, in which case a semi-aquatic lifestyle could be inferred. Accordingly, this study suggests an essentially terrestrial lifestyle for Microbunodon minimum, Bothriodon velaunus, Elomeryx borbonicus, Merycopotamus medioximus, Paenanthracotherium bergeri, and probably also Saotherium cf. S. mingoz, a slight degree of water dependence in Brachyodus onoideus, and a stronger one in Libycosaurus bahri and Hexaprotodon garyam, though less intense than in Hippopotamus amphibius. Comparisons with other large terrestrial and semi-aquatic taxa, and based on a large part of the diaphysis, are required to better decipher the microanatomical changes associated with a semi-aquatic lifestyle from those linked to loading in heavy quadrupedal mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

3D image data (.tif format) obtained by micro-tomography of MNHN specimens will be permanently saved by the MNHN DSI and identified by the inventory number of the specimen. They will be visible as work carried out on the interface https://3dtheque.mnhn.fr/ and made available via the interface http://colhelper.mnhn.fr/. All 3D image data obtained by micro-tomography at the IC2MP (University of Poitiers) are permanently saved by PALEVOPRIM under the responsibility of the director of the research unit (currently: JRB). Inventory will be communicated upon request, and data will be made available depending on the policy of the original specimen repository institution. As for the other microtomographic scans, they will be available under request to the authors.

References

  • Amson E, Muizon C de, Laurin M, Argot C, de Buffrenil V (2014) Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proc R Soc B Biol 281:20140192

    Article  Google Scholar 

  • Amson E, Nyakatura JA (2018) The postcranial musculoskeletal system of xenarthrans: insights from over two centuries of research and future directions. J Mammal Evol 25:459–484

    Article  Google Scholar 

  • Anderson JF, Hall‐Martin A, Russell DA (1985) Long‐bone circumference and weight in mammals, birds and dinosaurs. J Zool 207:53–61

    Article  Google Scholar 

  • Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M, Short RV, Xu X, Janke A (2002) Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA 99(12):8151-8156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augat P, Schorlemmer S (2006) The role of cortical bone and its microstructure in bone strength. Age Ageing 35:ii27-ii31

  • Avilla LDS, Vizcaíno SF (2005) Locomotory pattern of Astrapotherium magnum (Owen) (Mammalia: Astrapotheria) from the Neomiocene (Colhuehuapian–Santacrucian) of Argentina. II Congresso Latino-Americano de Paleontologia de Vertebrados, Boletim de Resumos, p 44

    Google Scholar 

  • Bibi F (2013) A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol Biol 13:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Boisserie J-R (2007) Family Hippopotamidae. In: Prothero DR, Foss SE (eds) The Evolution of Artiodactyls. Johns Hopkins University Press, Baltimore, pp 106–119

    Google Scholar 

  • Boisserie JR (2002) Nouveaux Hippopotamidae du Mio-Pliocène du Tchad et d'Ethiopie: implications phylogénétiques et paléoenvironnementales. Doctoral dissertation, Université de Poitiers, Poitiers

  • Boisserie JR (2005) The phylogeny and taxonomy of Hippopotamidae (Mammalia: Artiodactyla): a review based on morphology and cladistic analysis. Zool J Linnean Soc 143(1):1-26

  • Boisserie JR, Brunet M, Andossa L, Vignaud P (2003) Hippopotamids from the Djurab Pliocene faunas, Chad, central Africa. J Afr Earth Sci 36:15-27

  • Boisserie J, Fisher RE, Lihoreau F, Weston EM (2011) Evolving between land and water: key questions on the emergence and history of the Hippopotamidae (Hippopotamoidea, Cetancodonta, Cetartiodactyla). Biol Rev 86:601–625

    Article  PubMed  Google Scholar 

  • Boisserie J-R, Lihoreau F (2006) Emergence of Hippopotamidae: new scenarios. CR Palevol 5:749–756

    Article  Google Scholar 

  • Boisserie J-R, Lihoreau F, Brunet M (2005) The position of Hippopotamidae within Cetartiodactyla. Proc Natl Acad Sci USA 102:1537–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisserie J-R, Lihoreau F, Orliac M, Fisher RE, Weston EM, Ducrocq S (2010) Morphology and phylogenetic relationships of the earliest known hippopotamids (Cetartiodactyla, Hippopotamidae, Kenyapotaminae). Zool J Linnean Soc 158:325–366

    Article  Google Scholar 

  • Boisserie J-R, Merceron G (2011) Correlating the success of Hippopotaminae with the C4 grass expansion in Africa: relationship and diet of early Pliocene hippopotamids from Langebaanweg, South Africa. Palaeogeogr Palaeoclimatol Palaeoecol 308:350–361

    Article  Google Scholar 

  • Boisserie JR, Suwa G, Asfaw B, Lihoreau F, Bernor RL, Katoh S, Beyene Y (2017) Basal hippopotamines from the upper Miocene of Chorora, Ethiopia. J Vertebr Paleontol 37(3): e1297718

    Article  Google Scholar 

  • Boisserie J-R, Zazzo A, Merceron G, Blondel C, Vignaud P, Likius A, Mackaye HT, Brunet M (2005) Diets of modern and late Miocene hippopotamids: evidence from carbon isotope composition and micro-wear of tooth enamel. Palaeogeogr Palaeoclimatol Palaeoecol 221:153-174

    Article  Google Scholar 

  • Bongianni M (1988) Simon & Schuster’s Guide to Horses & Ponies of the World. Fireside, New York

    Google Scholar 

  • Cabard P (1976) Monographie du genre Microbunodon Depéret,1908 (Mammalia, Artiodactyla, Anthracotheriidae) de l’Oligocène supérieur d’Europe de l’Ouest. PhD Dissertation, Université de Poitiers, Poitiers

  • Canoville A, Laurin M (2010) Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on palaeobiological inferences. Biol J Linnean Soc 100:384–406

    Article  Google Scholar 

  • Cassini G, Vizcaíno S, Bargo M (2012) Body mass estimation in early Miocene native South American ungulates: a predictive equation based on 3D landmarks. J Zool 287:53–64

    Article  Google Scholar 

  • Châteauneuf JJ, Nury D (1995) La flore de l'Oligocène de Provence méridionale: implications stratigraphiques, environmentales et climatiques. Géol France 2: 43-55

    Google Scholar 

  • Clementz MT, Holroyd PA, Koch PL (2008) Identifying aquatic habits of herbivorous mammals through stable isotope analysis. PALAIOS 23:574–585

    Article  Google Scholar 

  • Cooper LN, Clementz MT, Usip S, Bajpai S, Hussain ST, Hieronymus TL (2016) Aquatic habits of cetacean ancestors: integrating bone microanatomy and stable isotopes. Integr Comp Biol 56:1370–1384

    Article  PubMed  Google Scholar 

  • Cooper LN, Thewissen JGM, Bajpai S, Tiwari BN (2011) Postcranial morphology and locomotion of the Eocene raoellid Indohyus (Artiodactyla: Mammalia). Hist Biol 1–32

  • Coughlin BL, Fish FE (2009) Hippopotamus underwater locomotion: reduced-gravity movements for a massive mammal. J Mammal 90:675–679

    Article  Google Scholar 

  • Cuvier G (1821–1824) Recherches sur les ossements fossiles, où l’on rétablit les caractères de plusieurs animaux dont les révolutions du globe ont détruit les espèces. E. d’Ocagne, Paris

  • David CC, Jacobs DJ (2014) Principal Component Analysis: a method for determining the essential dynamics of proteins. In: Livesay DR (ed) Protein Dynamics: Methods and Protocols. Humana Press, Totowa, pp 193–226

    Chapter  Google Scholar 

  • Dennell RW (2005) Early Pleistocene hippopotamid extinctions, monsoonal climates, and river system histories in South and South West Asia: comment on Jablonski (2004) ‘The Hippo’s Tale: how the anatomy and physiology of late Neogene Hexaprotodon shed light on late Neogene environmental change." Quat Int 117:119–123

  • Díaz-Berenguer E, Badiola A, Moreno-Azanza M, Canudo JI (2018) First adequately-known quadrupedal sirenian from Eurasia (Eocene, Bay of Biscay, Huesca, northeastern Spain). Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Díaz-Martínez I, Suarez-Hernando O, Larrasoaña JC, Martínez-García BM, Baceta JI, Murelaga X (2020) Multi-aged social behaviour based on artiodactyl tracks in an early Miocene palustrine wetland (Ebro Basin, Spain). Sci Rep 10:1-16

    Article  CAS  Google Scholar 

  • Dinerstein E (2011) Family Rhinocerotidae (Rhinoceroses). In: Wilson DE, Mittermeier RA (eds) Handbook of Mammals of the World. Volume 2: Hoofed Mammals. Lynx Edicions, Barcelona, pp144-181

    Google Scholar 

  • Dineur H (1981) Le genre Brachyodus, Anthracotheriidae (Artiodactyla, Mammalia) du Miocène inférieur d'Europe et d'Afrique. PhD Dissertation, Université Pierre et Marie Curie - Paris VI

  • Doube M, Kłosowski MM, Arganda-Carreras I, Cordelières FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47:1076–1079

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumont M, Laurin M, Jacques F, Pelle E, Dabin W, de Buffrenil V (2013) Inner architecture of vertebral centra in terrestrial and aquatic mammals: a two-dimensional comparative study. J Morphol 274:570–84

    Article  PubMed  Google Scholar 

  • Eltringham SK (1999) The Hippos. Academic Press, London

  • Endo H, Yoshida M, Nguyen TS, Akiba Y, Takeda M, Kudo K (2019) Three‐dimensional CT examination of the forefoot and hindfoot of the hippopotamus and tapir during a semiaquatic walking. Anat Histol Embryol 48:3-11

    Article  PubMed  Google Scholar 

  • Falconer H, Cautley SPT (1836) Note of the fossil camel on the Sivalik Hills. Asiatic Res 19:115-134

    Google Scholar 

  • Filhol H (1881) Etude des mammifères fossiles de Saint-Gerand le Puy (Allier). Annales des sciences géologiques 12:1–270

    Google Scholar 

  • Fisher RE, Scott KM, Adrian B (2010) Hind limb myology of the common hippopotamus, Hippopotamus amphibius (Artiodactyla: Hippopotamidae). Zool J Linnean Soc 158:661–682

    Article  Google Scholar 

  • Fisher RE, Scott KM, Naples VL (2007) Forelimb myology of the pygmy hippopotamus (Choeropsis liberiensis). Anat Rec 290:673–693

    Article  Google Scholar 

  • Flynn JJ, Charrier R, Croft DA, Wyss AR (2012) Cenozoic Andean faunas: shedding new light on South American mammal evolution, biogeography, environments, and tectonics. In: Patterson BD, Costa LP (eds) Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals. University of Chicago Press, Chicago, pp 51–75

    Chapter  Google Scholar 

  • Foley NM, Springer MS, Teeling EC (2016) Mammal madness: is the mammal tree of life not yet resolved? Philos Trans R Soc B 371: 20150140

    Article  Google Scholar 

  • Forasiepi AM, Cerdeno E, Bond M, Schmidt GI, Naipauer M, Straehl FR, Martinelli AG, Garrido AC, Schmitz MD, Crowley JL (2015) New toxodontid (Notoungulata) from the early Miocene of Mendoza, Argentina. Paläontol Z 89:611-634

    Article  Google Scholar 

  • Gatesy J (1997) More DNA support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gene gamma-fibrinogen. Mol Biol Evol 14:537–543

    Article  CAS  PubMed  Google Scholar 

  • Gatesy J, Geisler JH, Chang J, Buell C, Berta A, Meredith RW, Springer MS, McGowen MR (2013) A phylogenetic blueprint for a modern whale. Mol Phylogenet Evol 66:479–506

    Article  PubMed  Google Scholar 

  • Gatesy J, Hayashi C, Cronin MA, Arctander P (1996) Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol Biol Evol 13 :954–963

    Article  CAS  PubMed  Google Scholar 

  • Geais G (1934) Le Brachyodus borbonicus des argiles de St-Henri (près Marseille). Travaux et Documents des Laboratoires de Géologie de Lyon, Lyon

    Google Scholar 

  • Geisler JH, Theodor JM, Uhen MD, Foss SE (2007) Phylogenetic relationships of cetaceans to terrestrial artiodactyls. In: Prothero DR, Foss SC (eds) The Evolution of Artiodactyls. John Hopkins University Press, Baltimore, pp 19-31

    Google Scholar 

  • Geisler JH, Uhen MD (2003) Morphological support for a close relationship between hippos and whales. J Vertebr Paleontol 23: 991-996

    Article  Google Scholar 

  • Gilbert C, Ropiquet A, Hassanin A (2006) Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology, and biogeography. Mol Phylogenet Evol 40:101-17

    Article  CAS  PubMed  Google Scholar 

  • Girondot M, Laurin M (2003) Bone profiler: a tool to quantify, model, and statistically compare bone-section compactness profiles. J Vertebr Paleontol 23:458–461

    Article  Google Scholar 

  • Gomes Rodrigues H, Lihoreau F, Orliac M, Thewissen JGM, Boisserie J-R (2019) Unexpected evolutionary patterns of dental ontogenetic traits in cetartiodactyl mammals. Proc R Soc B 286:20182417

    Article  Google Scholar 

  • Grandi F, Bona F (2017) Prominatherium dalmatinum from the late Eocene of Grancona (Vicenza, NE Italy). The oldest terrestrial mammal of the Italian peninsula. CR Palevol 16: 738–745

    Article  Google Scholar 

  • Grossman A, Calvo R, López-Antoñanzas R, Knoll F, Hartman G, Rabinovich R (2019) First record of Sivameryx (Cetartiodactyla, Anthracotheriidae) from the lower Miocene of Israel highlights the importance of the Levantine Corridor as a dispersal route between Eurasia and Africa. J Vertebr Paleontol 39: e1599901

    Article  Google Scholar 

  • Holroyd PA, Lihoreau F, Gunnell GF, Miller ER (2010) Anthracotheriidae. In: Werdelin L, Sanders WJ (eds) Cenozoic Mammals of Africa. University of California Press, Berkeley, pp 843–51

    Chapter  Google Scholar 

  • Houssaye A (2009) “Pachyostosis” in aquatic amniotes: a review. Integr Zool 4:325-340

  • Houssaye A, Botton-Divet L (2018) From land to water: evolutionary changes in long bone microanatomy of otters (Mammalia: Mustelidae). Biol J Linnean Soc 125:240–249

    Article  Google Scholar 

  • Houssaye A, Fernandez V, Billet G (2016b) Hyperspecialization in some South American endemic ungulates revealed by long bone microstructure. J Mammal Evol 23:221–235

    Article  Google Scholar 

  • Houssaye A, Martin Sander P, Klein N (2016c) Adaptive patterns in aquatic amniote bone microanatomy—more complex than previously thought. Integr Comp Biol 56(6):1349-1369

    Article  PubMed  Google Scholar 

  • Houssaye A, Prévoteau J (2020) What about limb long bone nutrient canal(s)?–a 3D investigation in mammals. J Anat 236:510-521

  • Houssaye A, Taverne M, Cornette R (2018) 3D quantitative comparative analysis of long bone diaphysis variations in microanatomy and cross‐sectional geometry. J Anat 232:836–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houssaye A, Waskow K, Hayashi S, Cornette R, Lee AH, Hutchinson JR (2016a) Biomechanical evolution of solid bones in large animals: a microanatomical investigation. Biol J Linnean Soc 117:350–371

    Article  Google Scholar 

  • Irwin DM, Árnason Ú (1994) Cytochrome b gene of marine mammals: phylogeny and evolution. J Mammal Evol 2:37–55

  • Jacques L (2007) Les préférences écologiques (paléorégimes alimentaires, paléohabitats) des grands mammifères herbivores des sites à hominidés du Miocène supérieur du Nord Tchad. Reconstitution au moyen de l'analyse isotopique en carbone et oxygène du carbonate de l'émail dentaire. PhD Dissertation, Université de Poitiers, Poitiers

  • Klein N, Canoville A, Houssaye A (2019) Microstructure of vertebrae, ribs, and gastralia of Triassic sauropterygians—new insights into the microanatomical processes involved in aquatic adaptations of marine reptiles. Anat Rec 302:1770–1791

    Article  Google Scholar 

  • Klingel H (2013) Hippopotamus amphibius - common hippopotamus. In: Kingdon J, Hoffmann M (eds) Mammals of Africa. Bloomsbury, London, pp 68–78

    Google Scholar 

  • Kron DG, Manning E (1998) Anthracotheriidae. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of Tertiary Mammals of North America. Volume 1. Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Cambridge University Press, Cambridge, pp 381-388

    Google Scholar 

  • Ksepka DT, Werning S, Sclafani M, Boles ZM (2015) Bone histology in extant and fossil penguins (Aves: Sphenisciformes). J Anat 227:611–630

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurin M, Canoville A, Germain D (2011) Bone microanatomy and lifestyle: a descriptive approach. CR Palevol 10:381–402

    Article  Google Scholar 

  • Lihoreau F (2003) Systématique et Paléoécologie Des Anthracotheriidae [Artiodactyla ; Suiformes] Du Mio-Pliocène de l’Ancien Monde : Implications Paléobiogéographiques. PhD Dissertation, Université de Poitiers, Poitiers

  • Lihoreau F, Alloing-Séguier L, Antoine P-O, Boisserie J-R, Marivaux L, Métais G, Welcomme J-L (2016) Enamel microstructure defines a major Paleogene hippopotamoid clade: the Merycopotamini (Cetartiodactyla, Hippopotamoidea). Hist Biol 29:947–957

    Article  Google Scholar 

  • Lihoreau F, Blondel C, Barry J, Brunet M (2004) A new species of the genus Microbunodon (Anthracotheriidae, Artiodactyla) from the Miocene of Pakistan: genus revision, phylogenetic relationships and palaeobiogeography. Zool Scr 33(2):97-115

  • Lihoreau F, Boisserie J-R, Blondel C, Jacques L, Likius A, Mackaye H, Vignaud P, Brunet M (2014) Description and palaeobiology of a new species of Libycosaurus (Cetartiodactyla, Anthracotheriidae) from the late Miocene of Toros-Menalla, northern Chad. J Syst Palaeontol 12:761–798

    Article  Google Scholar 

  • Lihoreau F, Boisserie J-R, Manthi FK, Ducrocq S (2015) Hippos stem from the longest sequence of terrestrial cetartiodactyl evolution in Africa. Nature Comm 6:1–8

  • Lihoreau F, Boisserie JR, Viriot L, Coppens Y, Likius A, Mackaye HT, Taffeau P, Vignaud P, Brunet M (2006) Anthracothere dental anatomy reveals a late Miocene Chado-Libyan bioprovince. Proc Natl Acad Sci USA 103: 8763-8767.

  • Lihoreau F, Ducrocq S (2007) Family Anthracotheriidae. In: Prothero DR, Foss SE (eds) The Evolution of Artiodactyls. Johns Hopkins University Press, Baltimore, pp 89–105

    Google Scholar 

  • Lihoreau F, El Mabrouk E, Ammar HK, Marivaux L, Marzougui W, Tabuce R, Temani R, Vianey-Liaud M, Merzeraud G (2019) The Libycosaurus (Hippopotamoidea, Artiodactyla) intercontinental dispersal event at the early late Miocene revealed by new fossil remains from Kasserine area, Tunisia. Hist Biol: 1–13

  • Martinez J-N, Sudre J (1995) The astragalus of Paleogene artiodactyls: comparative morphology, variability and prediction of body mass. Lethaia 28:197–209

    Article  Google Scholar 

  • Medici EP, Mangini PR, Roberto ALVNJ, Ferreira V (2001) Order Perissodactyla, Family Tapiridae (Tapirs). In: Fowler ME (ed) Biology, Medicine, and Surgery of South American Wild Animals. Iowa State University Press, Ames, pp 363-375

    Google Scholar 

  • Merceron G, Escarguel G, Angibault J-M, Verheyden-Tixier H (2010) Can dental microwear textures record inter-individual dietary variations? PLoS ONE 5(3): e9542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mielke M, Wölfer J, Arnold P, van Heteren AH, Amson E, Nyakatura JA (2018) Trabecular architecture in the sciuromorph femoral head: allometry and functional adaptation. Zool Lett 4:10

    Article  Google Scholar 

  • Montañez‐Rivera I, Nyakatura JA, Amson E (2018) Bone cortical compactness in ‘tree sloths’ reflects convergent evolution. J Anat 233:580–591

    Article  PubMed  PubMed Central  Google Scholar 

  • Montgelard C, Catzeflis FM, Douzery E (1997) Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol Biol Evol 14:550–559

    Article  CAS  PubMed  Google Scholar 

  • Nakajima Y, Endo H (2013) Comparative humeral microanatomy of terrestrial, semiaquatic, and aquatic carnivorans using micro-focus CT scan. Mammal Study 38:1-8

    Article  Google Scholar 

  • Nelson SV (2007) Isotopic reconstructions of habitat change surrounding the extinction of Sivapithecus, a Miocene hominoid, in the Siwalik Group of Pakistan. Palaeogeogr Palaeoclimatol Palaeoecol 243:204–222

    Article  Google Scholar 

  • Nikaido M, Rooney AP, Okada N (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci USA 96:10261–10266

  • Nowak RN, Paradiso JL (1983) Walker's Mammals of the World. Johns Hopkins Universty Press, Baltimore

  • Orliac M, Boisserie J-R, MacLatchy L, Lihoreau F (2010) Early Miocene hippopotamids (Cetartiodactyla) constrain the phylogenetic and spatiotemporal settings of hippopotamid origin. Proc Natl Acad Sci USA 107:11871–11876

  • Orliac M, Guy F, Lebrun R (2014) Osteological connections of the petrosal bone of the extant Hippopotamidae Hippopotamus amphibius and Choeropsis liberiensis. MorphoMuseum 1:e1

    Article  Google Scholar 

  • Oxnard C (1990) From giant ground sloths to human osteoporosis: an essay on the architecture and biomechanics of bone. Proc Australas Soc Hum Biol 3: 75-96

    Google Scholar 

  • Pickford M (2008) The myth of the hippo-like anthracothere: the eternal problem of homology and convergence. Rev Esp Paleontol 23:31–90

  • Quemeneur S, de Buffrénil V, Laurin M (2013) Microanatomy of the amniote femur and inference of lifestyle in limbed vertebrates. Biol J Linnean Soc 109:644–655

  • R Core Team (2014) R: a language and environment for statisticalcomputing. R Foundation for Statistical Computing, Vienna

  • Rincon AF, Bloch JI, MacFadden BJ, Jaramillo CA (2013) First Central American record of Anthracotheriidae (Mammalia, Bothriodontinae) from the early Miocene of Panama. J Vertebr Paleontol 33: 421-433

  • Robinson PT (2013) Choeropsis liberiensis pygmy hippopotamus. Pp. In: Kingdon J, Hoffman M (eds) Mammals of Africa, volume VI - Pigs, Hippopotamuses, Deer and Bovids. Bloomsbury, London, pp 80-83

  • Roman F, Boucher J (1936) Les mammifères stampiens du Bassin de Roanne (Loire): I. Anthracotherium bumbachense. Travaux des Laboratoires de Géologie de la Faculté des Sciences de Lyon 29(24):1-48

  • Ruff CB (2002) Long bone articular and diaphyseal structure in Old World monkeys and apes. I: locomotor effects. Am J Phys Anthropol 119:305–42

  • Ruimerman R, Hilbers P, van Rietbergen B, Huiskes R (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38:931-941

  • Rütimeyer CL (1857) Über Anthracotherium magnum und hippoideum. Neue Denkschriften der schweizerischen Naturforschenden Gesellschaft15:1–32

  • Scherler L (2011) Terrestrial paleoecosystems of large mammals (Tapiridae, Anthracotheriidae, Suoidea) from the early Oligocene to the early Miocene in the Swiss Molasse Basin: biostratigraphy, biogeochemistry, paleobiogeography and paleoecology. Unpublished PhD thesis, University of Fribourg, Fribourg

  • Scherler L, Lihoreau F, Becker D (2019). To split or not to split Anthracotherium? A phylogeny of Anthracotheriinae (Cetartiodactyla: Hippopotamoidea) and its palaeobiogeographical implications. Zool J Linnean Soc 185(2):487-510

    Google Scholar 

  • Scott WB, Jepsen GL (1940) The mammalian fauna of the White River Oligocene: Part IV. Artiodactyla. Trans Am Philos Soc 28:363–746

  • Shockey BJ, Daza FA (2004) Pyrotherium macfaddeni, sp. nov. (late Oligocene, Bolivia) and the pedal morphology of pyrotheres. J Vertebr Paleontol 24:481–488

    Article  Google Scholar 

  • Sieber R (1936) Remarques sur les Anthracotherium de l’Oligocene français. Bull Soc Hist Nat Toulouse 70:351-361

    Google Scholar 

  • Soe AN, Chavasseau O, Chaimanee Y, Sein C, Jaeger J-J, Valentin X, Ducrocq S (2017) New remains of Siamotherium pondaungensis (Cetartiodactyla, Hippopotamoidea) from the Eocene of Pondaung, Myanmar: paleoecologic and phylogenetic implications. J Vertebr Paleontol 37:e1270290

    Article  Google Scholar 

  • Springer MS, Foley NM, Brady PL, Gatesy J, Murphy WJ (2019) Evolutionary models for the diversification of placental mammals across the KPg Boundary. Front Genet 10:1241

  • Taylor MA (2000) Functional significance of bone ballast in the evolution of buoyancy control strategies by aquatic tetrapods. Hist Biol 14:1531

    Article  Google Scholar 

  • Thewissen JGM, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190–1194.

    Article  CAS  PubMed  Google Scholar 

  • Tsubamoto T (2010) Recognition of Microbunodon (Artiodactyla, Anthracotheriidae) from the Eocene of China. Paleontol Res 14:161–65

    Article  Google Scholar 

  • Tütken T, Absolon J (2015) Late Oligocene ambient temperatures reconstructed by stable isotope analysis of terrestrial and aquatic vertebrate fossils of Enspel, Germany. Palaeobio Palaeoenv 95:17–31

    Article  Google Scholar 

  • Ursing BM, Arnason U (1998) Analyses of mitochondrial genomes strongly support a hippopotamus-whale clade. Proc R Soc B Biol 265:2251–2255

    Article  CAS  Google Scholar 

  • Vautrin Q, Lihoreau F, Sambou B, Thiam M, Martin JE, Tabuce R, Adnet S, Lebrun R, Charruault A-L, Sarr R, Hautier L (2020) From limb to fin: an Eocene protocetid forelimb from Senegal sheds new light on the early locomotor evolution of cetaceans. Palaeontology 63:51–66

    Article  Google Scholar 

  • Vignaud P, Duringer P, Mackaye HT, Likius A, Blondel C, Boisserie J-R, Bonis L de, Eisenmann V, Etienne M-E, Geraads D, Guy F, Lehmann T, Lihoreau F, Lopez-Martinez N, Mourer-Chauviré C, Otero O, Rage J-C, Schuster M, Viriot L, Zazzo A, Brunet M (2002) Geology and palaeontology of the upper Miocene Toros-Menalla hominid locality, Chad. Nature 418:152–155

    Article  CAS  PubMed  Google Scholar 

  • Volpato V, Viola TB, Nakatsukasa M, Bondioli L, Macchiarelli R (2008) Textural characteristics of the iliac-femoral trabecular pattern in a bipedally trained Japanese macaque. Primates 49:16–25

    Article  PubMed  Google Scholar 

  • Wall WP (1983) The correlation between high limb-bone density and aquatic habits in recent mammals. J Paleontol 57:197–207

    Google Scholar 

  • Weston EM, Boisserie JR (2010) Hippopotamidae. In: Werdelin L, Sanders WJ (eds) Cenozoic Mammals of Africa. University of California Press, Berkeley, pp 853-862

  • Zazzo A, Bocherens H, Brunet M, Beauvilain A, Billiou D, Mackaye HT, Vignaud P, Mariotti A (2000) Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate. Paleobiology 26:294–309

  • Zhou X, Xu S, Yang Y, Zhou K, Yang G (2011) Phylogenomic analyses and improved resolution of Cetartiodactyla. Mol Phylogenet Evol 61:255–264

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We warmly thank J. Lesur, A. Verguin, C. Argot, and G. Billet (MNHN, Paris, France); F. Saragoza, A. Bonnet, and E. Magne (Musée Crozatier, Le Puy-en-Velay, France); D. Berthet and F. Vigouroux (Musée des Confluences, Lyon, France); E. Robert (Université Claude Bernard Lyon I, Lyon, France); L. Costeur and F. Dammeyer (Naturhistorisches Museum Basel, Basel, Switzerland); G. Garcia and M. Brunet (PALEVOPRIM, Université de Poitiers, Poitiers, France); C. Nékoulnang Djétounako, B. El-Hadj Mallah and M. Adoum, (Centre National de Recherche pour le Dévelopement, N’Djamena, Chad) with support of L. Andossa and M. Hassane Taïsso (Université de N’Djamena, Chad) for the loan of the hippopotamoid specimens. We thank A. Mazurier (IC2MP, UMR 7285 CNRS-UP, Poitiers, France), R. Lebrun (ISEM, plateforme MRI, Montpellier, France), M. Garcia Sanz (AST-RX platform, UMS 2700, MNHN), and the Steinmann-Institut (University of Bonn, Germany), for providing beamtime and support, and for performing scans and reconstructions. We are very grateful to L.N. Cooper (Northeast Ohio Medical University, USA) for sending us virtual sections of Merycopotamus and Microbunodon. We also thank F. Guy, X. Valentin, J. Surault (PALEVOPRIM), and A.-L. Charruault (ISEM) for their precious help for the preparation of the specimens before scanning, A. Gekme and L. Martin for borrowing and transporting some of the studied specimens, as well as the Mission Paléoanthropologique Franco-Tchadienne (MPFT, PI: M. Brunet) for providing access to the Chadian material. We also thank two anonymous reviewers for constructive comments that helped to improve the manuscript.

Funding

We acknowledge financial support from the ANR SPLASH (ANR-15-CE32-0010). AH also acknowledges financial support from the ERC-2016-STG-715300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Houssaye.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1766 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houssaye, A., Martin, F., Boisserie, JR. et al. Paleoecological Inferences from Long Bone Microanatomical Specializations in Hippopotamoidea (Mammalia, Artiodactyla). J Mammal Evol 28, 847–870 (2021). https://doi.org/10.1007/s10914-021-09536-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-021-09536-x

Keywords

Navigation