Skip to main content

Advertisement

Log in

Tracing the Paleobiology of Paedotherium and Tremacyllus (Pachyrukhinae, Notoungulata), the Latest Sciuromorph South American Native Ungulates – Part II: Orbital, Auditory, and Occipito-Cervical Regions

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The caudal cranium and occipito-cervical region, although usually overlooked, are informative about the paleobiology of fossil mammals, allowing inquiry into vision and hearing abilities, as well as head and neck postures. Particularly for Pachyrukhinae, some related features remain unexplored. In this contribution, 22 specimens of Paedotherium and Tremacyllus were analyzed in a mainly qualitative and comparative framework. Pachyrukhines are characterized by having large orbits and hearing cavities, moderate to short necks with generalized morphologies, and S-shape postures. These features allow rejecting some types of specialized digging habits, and support the preference of open or low-humidity environments. Paedotherium typicum is distinguished by the presence of laterally oriented eyes, marked vaulted cranium and predominant short extensor and stabilizing neck muscles, and cervico-occipital-hyoid configurations suitable for ventro-flexed resting posture. These features indicate accentuated frontation and panoramic-vision, upward head postures enhancing substrate perception, and the resistance of impacts during leaping-cursorial locomotion. Conversely, P. bonaerense, and to lesser degree Tremacyllus spp., show less frontation and probably adopted more horizontal head postures. More particularly, stronger ventral and lateral neck and head flexors and extrinsic arm musculature are reconstructed for P. bonaerense, compatible with generalist or scratch-digging habits. Its smaller auditory cavities and stronger ear musculature, compared to the contemporary P. typicum and especially Tremacyllus spp., would indicate larger ears and microhabitat segregation. The integrative analysis proposed here and in the accompanying contribution aims to shed light on convergences with extant models, paleobiology, niche partitioning, and external appearance of the latest rodent-like ungulates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agrawal VC (1967) Skull adaptations in fossorial rodents. Mammalia 31:300–312

    Google Scholar 

  • Alhajeri BH, Steppan SJ (2018) A phylogenetic test of adaptation to deserts and aridity in skull and dental morphology across rodents. J Mammal 99:1197–1216

    Google Scholar 

  • Álvarez A, Ercoli MD (2017) Why pacaranas never say no: analysis of the unique occipitocervical configuration of †Tetrastylus intermedius Rovereto, 1914, and other dinomyids (Caviomorpha; Dinomyidae). J Vertebr Paleontol 37: e1385476. https://doi.org/10.1080/02724634.2017.1385476

    Article  Google Scholar 

  • Álvarez A, Perez SI, Verzi DH (2013) Ecological and phylogenetic dimensions of the cranial shape diversification in South American caviomorph rodents (Rodentia: Hystricomorpha). Biol J Linnean Soc 110:898–913

    Google Scholar 

  • Argot C (2003) Functional-adaptive anatomy of the axial skeleton of some extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 255:279–300

    PubMed  Google Scholar 

  • Arnold P, Esteve-Altava B, Fischer MS (2017) Musculoskeletal networks reveal topological disparity in mammalian neck evolution. BMC Evol Biol 17:251

    PubMed  PubMed Central  Google Scholar 

  • Barone R (1987) Anatomía Comparada de los Mamíferos Domésticos. Hemisferio Sur, Buenos Aires

    Google Scholar 

  • Becerra F, Echeverría A, Vassallo AI, Casinos A (2011) Bite force and jaw biomechanics in the subterranean rodent Talas tuco-tuco (Ctenomys talarum) (Caviomorpha: Octodontoidea). Can J Zool 89:334–342

    Google Scholar 

  • Billet G (2011) Phylogeny of the Notoungulata (Mammalia) based on cranial and dental characters. J Syst Palaeontol 9:481–497

    Google Scholar 

  • Billet G, Patterson B, Muizon C de (2009) Craniodental anatomy of late Oligocene archaeohyracids (Notoungulata, Mammalia) from Bolivia and Argentina and new phylogenetic hypotheses. Zool J Linnean Soc 155:458–509

  • Bond M (1999) Quaternary native ungulates of southern South America. A synthesis. In: Rabassa J, Salemme M (eds) Quaternary of South America and Antarctic Peninsula. A.A. Balkema, Rotterdam, pp 177–205

    Google Scholar 

  • Bramble DM (1989) Cranial specialization and locomotor habit in the Lagomorpha. Am Zool 29:303–317

    Google Scholar 

  • Candela AM, Muñoz NA, García-Esponda CM (2017) The tarsal-metatarsal complex of caviomorph rodents: anatomy and functional-adaptive analysis. J Morphol 278:828–847

    PubMed  Google Scholar 

  • Candela AM, Noriega JI, Reguero MA (2007) The first Pliocene mammals from the northeast (Mesopotamia) of Argentina: its biostratigraphic and paleoenvironmental significance. J Vertebr Paleontol 27:476–483

    Google Scholar 

  • Carrizo LV, Díaz MM (2013) Descripción morfológica del esqueleto axial de filotinos (Rodentia: Sigmodontinae): aspectos morfofuncionales y filogenéticos. Mastozool Neotrop 20:7–29

    Google Scholar 

  • Cerdeño E, Bond M (1998) Taxonomic revision and phylogeny of Paedotherium and Tremacyllus (Pachyrukhinae, Hegetotheriidae, Notoungulata) from the late Miocene to Pleistocene of Argentina. J Vertebr Paleontol 18:799–811

    Google Scholar 

  • Cifelli RL (1985) South American ungulate evolution and extinction. In: Stehli FG, Webb SD (eds) The Great American Biotic Interchange. Plenum Press, New York, pp 249–266

    Google Scholar 

  • Cione LA, Gasparini GM, Soibelzon E, Soibelzon LE, Tonni EP (2015) The Great American Biotic Interchange: A South American Perspective. Springer Briefs in Earth System Sciences. Springer, New York

    Google Scholar 

  • Cox PG (2008) A quantitative analysis of the eutherian orbit: correlations with masticatory apparatus. Biol Rev 83:35–69

    PubMed  Google Scholar 

  • Croft DA (2016) Horned Armadillos and Rafting Monkeys: The Fascinating Fossil Mammals of South America (Life of the Past). Indiana University Press, Bloomington

    Google Scholar 

  • Croft DA, Anaya F (2006) A new middle Miocene hegetotheriid (Notoungulata: Typotheria) and a phylogeny of the Hegetotheriidae. J Vertebr Paleontol 26:387–399

    Google Scholar 

  • Danowitz M, Solounias N (2015) The cervical osteology of Okapia johnstoni and Giraffa camelopardalis. PLoS ONE 10:e0136552

    PubMed  PubMed Central  Google Scholar 

  • De Blieux DD, Simons EL (2002) Cranial and dental anatomy of Antilohyrax pectidens: a late Eocene hyracoid (Mammalia) from the Fayum, Egypt. J Vertebr Paleontol 22:122–136

    Google Scholar 

  • Deschamps C (2005) Late Cenozoic mammal bio-chronostratigraphy in southwestern Buenos Aires Province, Argentina. Ameghiniana 42:733–750

    Google Scholar 

  • Domingo L, Tomassini RL, Montalvo CI, Sanz-Pérez D, Alberdi MT (2020) The Great American Biotic Interchange revisited: a new perspective from the stable isotope record of Argentine Pampas fossil mammals. Sci Rep 10:1608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dozo MT (1997) Paleoneurología de Dolicavia minuscula (Rodentia, Caviidae) y Paedotherium insigne (Notoungulata, Hegetotheriidae) del Plioceno de Buenos Aires, Argentina. Ameghiniana 34:427–435

    Google Scholar 

  • DuBrul IK (1950) Posture, locomotion and the skull in Lagomorpha. Am J Anat 87:277–313

    CAS  PubMed  Google Scholar 

  • Elissamburu A (2004) Morphometric and morphofunctional analysis of the appendicular skeleton of Paedotherium (Mammalia, Notoungulata). Ameghiniana 41:363–380

    Google Scholar 

  • Elissamburu A (2007) Estudio biomecánico del aparato locomotor de ungulados nativos sudamericanos (Notoungulata). Ph.D. dissertation, Universidad Nacional de La Plata, La Plata

  • Elissamburu A, Dondas A, De Santis L (2011) Morfometría de las paleocuevas de la ‘Fm.’ Chapadmalal y su asignación a Actenomys (Rodentia), Paedotherium (Notoungulata) y otros mamíferos fósiles hospedantes. Mastozool Neotrop 18:227–238

    Google Scholar 

  • Ercoli MD (2015) Morfología del aparato músculo-esqueletario del postcráneo de los mustélidos (Carnivora, Mammalia) fósiles y vivientes de América del Sur: implicancias funcionales en un contexto filogenético. Ph.D. dissertation, Universidad Nacional de La Plata, La Plata

  • Ercoli MD (2017) Morpho-functional analysis of the mastoid region of the extinct South American mustelid †Stipanicicia pettorutii. Earth Environ Sci Trans R Soc Edinburgh 106:337–349

    Google Scholar 

  • Ercoli MD, Álvarez A, Busker F, Morales MM, Julik E, Smith HF, Adrian B, Barton M, Bhagavatula K, Poole M, Shahsavan M, Wechsler R, Fisher RE (2017) Myology of the head, neck, and thoracic region of the lesser grison (Galictis cuja) in comparison with the red panda (Ailurus fulgens) and other carnivorans: phylogenetic and functional implications. J Mammal Evol 24:289–322

    Google Scholar 

  • Ercoli MD, Álvarez A, Candela AM (2019) Sciuromorphy outside rodents reveals an ecomorphological convergence between squirrels and extinct South American ungulates. Commun Biol 2:202. https://doi.org/10.1038/s42003-019-0423-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Ercoli MD, Candela AM, Rasia LL, Ramírez MA (2018) Dental shape variation of Neogene Pachyrukhinae (Mammalia, Notoungulata, Hegetotheriidae): systematics and evolutionary implications for the late Miocene Paedotherium species. J Syst Palaeontol 16:1073–1095

  • Ercoli MD, Álvarez A, Moyano SR, Youlatos D, Candela AM (2020) Tracing the paleobiology of Paedotherium and Tremacyllus (Pachyrukhinae, Notoungulata), the latest sciuromorph South American native ungulates – Part I: snout and masticatory apparatus. J Mammal Evol. https://doi.org/10.1007/s10914-020-09516-7

  • Evans HE, de Lahunta A (2013) Miller’s Guide to the Dissection of the Dog. W.B. Saunders Company, Philadelphia

  • Fernández M (1949) Sobre la vizcacha (Lagostomus trichodactylus Brooks) sus viviendas y su protección. Bol Acad Nac Cienc 38:348–379

    Google Scholar 

  • Fernández ME, Vassallo AI, Zarate M (2000) Functional morphology and palaeobiology of the Pliocene rodent Actenomys (Caviomorpha: Octodontidae): the evolution to a subterranean mode of life. Zool J Linnean Soc 71:71–90

    Google Scholar 

  • Flores DA, Díaz MM (2009) Postcranial skeleton of Glironia venusta (Didelphimorphia, Didelphidae, Caluromyinae): description and functional morphology. Zoosyst Evol 85:311–339

    Google Scholar 

  • Gambaryan PP, Zherebtsova OV, Platonov VV (2005) Morphofunctional analysis of the cervical-thoracic region in some burrowing mammals. Russ J Theriol 4:13–41

    Google Scholar 

  • Giannini NP, García-López DA (2014) Ecomorphology of mammalian fossil lineages: identifying morphotypes in a case study of endemic South American ungulates. J Mammal Evol 21:195–212

    Google Scholar 

  • Gomes Rodrigues H, Cornette R, Clavel J, Cassini GH, Bhullar B-AS, Fernández-Monescillo M, Moreno K, Herrel A, Billet G (2018) Differential influences of allometry, phylogeny and environment on the rostral shape diversity of extinct South American notoungulates. R Soc Open Sci 5:171816

    PubMed  PubMed Central  Google Scholar 

  • Graf W, de Waele C, Vidal PP (1995) Functional anatomy of the head-neck movement system of quadrupedal and bipedal mammals. J Anat 186:55–74

    PubMed  PubMed Central  Google Scholar 

  • Hatt RT (1932) The vertebral column of ricochetal rodents. Bull Am Mus Nat Hist 63:599–738

    Google Scholar 

  • Hautier L, Lebrun R, Cox PG (2012) Patterns of covariation in the masticatory apparatus of hystricognathous rodents: implications for evolution and diversification. J Morphol 273:1319–1337

    PubMed  Google Scholar 

  • Heesy CP (2004) On the relationship between orbit orientation and binocular visual field overlap in mammals. Anat Rec 281A:1104–1110

    Google Scholar 

  • Howell AB (1932) The saltatorial rodent Dipodomys: the functional and comparative anatomy of its muscular and osseous systems. Proc Am Acad Arts Sci 67:377–536

    Google Scholar 

  • Huang GT, Rosowski JJ, Ravicz ME, Peake WT (2002) Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita). J Comp Physiol A 188:663–681

    CAS  Google Scholar 

  • Jouffroy FK, Lessertisseur J (1971) Musculature du tronc, généralités. In: Grassé P-P (ed) Traité de Zoologie. Anatomie, Systématique, Biologie, Tome XVI, Fascicule II: Mammifères. Musculature. Masson et Cie Éditeurs, Paris, pp 472–871

  • Kneepkens AFLM, Macdonald AA (2010) Cranial muscles of the Sulawesi babirusa (Babyrousa celebensis). Anat Histol 39:120–137

    CAS  Google Scholar 

  • König HE, Liebich HG (2016) Anatomia dos Animais Domésticos: Texto e Atlas Colorido. Artmed Editora, Porto Alegre

    Google Scholar 

  • Kraatz BP, Sherratt E, Bumacod N, Wedel MJ (2015) Ecological correlates to cranial morphology in leporids (Mammalia, Lagomorpha). Peer J 3:e844

    PubMed  Google Scholar 

  • Kraglievich L (1926) Sobre el conducto humeral en las vizcachas y paquirucos chapadmalenses con descripción del Paedotherium imperforatum. Anales Mus Hist Nat Buenos Aires 34:45–88

    Google Scholar 

  • Lay DM (1972) The anatomy, physiology, functional significance and evolution of specialized hearing organs of gerbilline rodents. J Morphol 138:41–120

    CAS  PubMed  Google Scholar 

  • Lorente M, Gelfo JN, López GM (2019) First skeleton of the notoungulate mammal Notostylops murinus and palaeobiology of Eocene Notostylopidae. Lethaia 52:244–259

    Google Scholar 

  • MacPhee RDE (2011) Basicranial morphology and relationships of Antillean Heptaxodontidae (Rodentia, Ctenohystrica, Caviomorpha). Bull Am Mus Nat Hist 363:1–70

    Google Scholar 

  • MacPhee RDE (2014) The serrialis bone, interparietals, “x” elements, entotympanics, and the composition of the notoungulate caudal cranium. Bull Am Mus Nat Hist 384:1–69

    Google Scholar 

  • Mares MA, Ojeda RA, Barquez RM (1989) Guide to the Mammals of Salta Province, Argentina. University of Oklahoma Press, Norman

  • Mason MJ (2016) Structure and function of the mammalian middle ear. I: large middle ears in small desert mammals. J Anat 228:284–299

    PubMed  Google Scholar 

  • Montalvo CI, Tomassini RL, Sostillo R (2016) Leftover prey remains: a new taphonomic mode from the late Miocene Cerro Azul Formation of central Argentina. Lethaia 49:219–239

  • Moyano SR, Cassini GH, Giannini NP (2018) Skull ontogeny of the hyraxes Procavia capensis and Dendrohyrax arboreus (Procaviidae: Hyracoidea). J Mammal Evol 26:317–331

    Google Scholar 

  • Muñoz NA (2017) Esqueleto apendicular de tipoterios (Notoungulata) y caviomorfos (Rodentia) de la Formación Santa Cruz (Mioceno inferior alto). Implicancias paleoecológicas. Ph.D. dissertation, Universidad Nacional de La Plata, La Plata

  • Nalley TK, Grider-Potter N (2017) Functional analyses of the primate upper cervical vertebral column. J Hum Evol 107:19–35

    PubMed  Google Scholar 

  • Nasif NL, Abdala F (2015) Craniodental ontogeny of the pacarana Dinomys branickii Peters 1873 (Rodentia, Hystricognathi, Caviomorpha, Dinomyidae). J Mammal 26:1224–1244

    Google Scholar 

  • Noble VE, Kowalski EM, Ravosa MJ (2000) Orbit orientation and the function of the mammalian postorbital bar. J Zool 250:405–418

    Google Scholar 

  • O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post K-Pg radiation of placentals. Science 339:662–667

    CAS  PubMed  Google Scholar 

  • Olivares AI, Álvarez A, Verzi DH, Perez SI, De Santi NA (2020) Unravelling the distinctive craniomandibular morphology of the Plio-Pleistocene Eumysops in the evolutionary setting of South American octodontoid rodents (Hystricomorpha). Palaeontology 63:443–458

    Google Scholar 

  • Ortiz AM, Ercoli MD, Álvarez A (2017) La asociación entre las distintas estrategias locomotoras y la diversidad de forma del fémur en mamíferos actuales: inferencias en paquiruquinos. XXX Jorn Argent Mastozool Res:180

  • Pérez LM, Toledo N, De Iullis G, Bargo MS, Vizcaíno SF (2010) Morphology and function of the hyoid apparatus of fossil xenarthrans (Mammalia). J Morphol 271:1119–1133

  • Radinsky LB (1981) Evolution of skull shape in carnivores: 1. Representative modern carnivores. Biol J Linnean Soc 15:369–388

    Google Scholar 

  • Reguero MA (1993) Los Typotheria y Hegetotheria (Mammalia: Notoungulata) eocenos de la Localidad Cañadón Blanco, Chubut. Ameghiniana 30:336

    Google Scholar 

  • Reguero MA, Candela AM, Cassini GH (2010) Hypsodonty and body size in rodent-like notoungulates. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 358–371

    Google Scholar 

  • Reguero MA, Candela AM, Galli CI, Bonini R, Voglino D (2015) A new hypsodont notoungulate (Hegetotheriidae, Pachyrukhinae) from the late Miocene of the Eastern Cordillera, Salta Province, northwest of Argentina. Andean Geol 42:56–70

    Google Scholar 

  • Reguero MA, Dozo MT, Cerdeño E (2007) Medistylus dorsatus (Ameghino, 1903), an enigmatic Pachyrukhinae (Hegetotheriidae, Notoungulata) from the Deseadan of the Chubut province, Argentina. Systematic and paleoecology. J Paleontol 81:1301–1307

    Google Scholar 

  • Reguero MA, Prevosti FJ (2010) Rodent-like notoungulates (Typotheria) from Gran Barranca, Chubut Province, Argentina. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 148–165

    Google Scholar 

  • Rocha-Barbosa O, Fiuza de Castro Loguercio M, Casinos A, Silva Climaco das Chagas K, Abreu dos Santos J (2015) Ecomorphological and locomotor diversity in caviomorph rodents with emphasis on cavioids. In: Vassallo I, Antenucci D (eds) Biology of Caviomorph Rodents: Diversity and Evolution. SAREM, Ciudad Autónoma de Buenos Aires

  • Rosowski JJ, Ravicz ME, Songer JE (2006) Structures that contribute to middle-ear admittance in chinchilla. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:1287–1311

  • Ryan JM (1989) Comparative myology and phylogenetic systematics of the Heteromyidae (Mammalia, Rodentia). Misc Publ Mus Zool Univ Michigan 176:1–103

    Google Scholar 

  • Sargis EJ (2001) A preliminary qualitative analysis of the axial skeleton of tupaiids (Mammalia, Scandentia): functional morphology and phylogenetic implications. J Zool 253:473–483

    Google Scholar 

  • Schellhorn R (2018) A potential link between lateral semicircular canal orientation, head posture, and dietary habits in extant rhinos (Perissodactyla, Rhinocerotidae). J Morphol 279 (1):50–61

  • Scott WB (1913) A History of Land Mammals in the Western Hemisphere. The MacMillan Company, New York, 732 pp

    Google Scholar 

  • Seckel L, Janis C (2008) Convergences in scapula morphology among small cursorial mammals: an osteological correlate for locomotory specialization. J Mammal Evol 5:261–279

    Google Scholar 

  • Seoane FD, Roig Juñent S, Cerdeño E (2017) Phylogeny and paleobiogeography of Hegetotheriidae (Mammalia, Notoungulata). J Vertebr Paleontol 37:e1278547

    Google Scholar 

  • Sinclair WJ (1909a) The Santa Cruz Typotheria. Proc Am Philos Soc 47:64–78

    Google Scholar 

  • Sinclair WJ (1909b) Mammalia of the Santa Cruz beds. Typotheria I. In: Scott WB (ed) Reports of the Princeton University Expeditions to Patagonia, Vol. IV. Princeton University Press, Princeton, pp 333–460

  • Sisson S, Grossman JD (1930) The Anatomy of the Domestic Animals. W.B. Saunders Company, Philadelphia

    Google Scholar 

  • Slijper EJ (1946) Comparative biologic–anatomical investigations on the vertebral column and spinal musculature of mammals. Verh Kon Ned Akad Wet 42:1–128

    Google Scholar 

  • Sosa LM, García López DA (2018) Structural variation of the masseter muscle in Typotheria (Mammalia, Notoungulata). Serie Correl Geol 34:53–70

    Google Scholar 

  • Sostillo R, Cerdeño E, Montalvo CI (2018) Taxonomic implications of a large sample of Tremacyllus (Hegetotheriidae: Pachyrukhinae) from the late Miocene Cerro Azul Formation of La Pampa, Argentina. Ameghiniana 55:407–422

  • Sprague JM (1942) The hyoid apparatus of Neotoma. J Mammal 23:405–411

    Google Scholar 

  • Squarcia SM, Sidorkewicj NS, Casanave WB (2007) The hypertrophy of the tympanic bulla in three species of dasypodids (Mammalia, Xenarthra) from Argentina. Int J Morphol 25:597–602

    Google Scholar 

  • Turnbull WD (1970) Mammalian masticatory apparatus. Fieldiana Geol 18:147–356

    Google Scholar 

  • VanBuren CS, Evans DC (2017) Evolution and function of anterior cervical vertebral fusion in tetrapods. Biol Rev 92:608–626

    PubMed  Google Scholar 

  • Vera B, Ercoli MD (2018) Systematic and morphogeometric analyses of Pachyrukhinae (Mammalia, Hegetotheriidae) from the Huayquerías, Mendoza (Argentina): biostratigraphic and evolutionary implications. J Vertebr Paleontol 38:e1473410

    Google Scholar 

  • Zetti J (1972a) Observaciones sobre los Pachyrukhinae (Notoungulata) del Plioceno argentino. Publ Mus Munic Cs Nat Mar del Plata 2:41–52

    Google Scholar 

  • Zetti J (1972b) Un nuevo paquiruquino de la región pampeana. Publ Mus Munic Cs Nat Mar del Plata 2:53–56

    Google Scholar 

Download references

Acknowledgments

The authors thank R. Bárquez, M. Díaz (CML), L. Chornogubsky, M. D. Ezcurra, P. Teta, G. Cassini, S. Lucero (MACN), M. Reguero (MLP), B. Patterson, W. Simpson (FMNH), N. Solís (IDGYM), M. Taglioretti, D. Romero (MMP), and P. Ortíz (PVL) for granting access to specimens under their care. To N. Martino (MMP) and D. García López (PVL) for help during collection visits. We are very grateful to two anonymous reviewers, and the Editor-in-Chief J. Wible for their valuable comments and corrections that greatly improved this work. We thank S. Rosas (INECOA) for help with graphical editions, and to M. M. Morales and A. Elissamburu for access to specialized literature. To M. Reguero, M. Taglioretti, and M.I. Zamar for their help during the anatomical studies. A.A. thanks CONICET and Fulbright Commission, and M.D.E. acknowledges IOM, for financial support for visiting the FMNH collections. This work is a contribution to the financed project 11/N865 (UNLP), PICT-2018-01237 (ANPCyT) and INECOA-PUE 2017 22920170100027CO (CONICET).

Author information

Authors and Affiliations

Authors

Contributions

MDE conceived the study; MDE and AA acquired all the images used and made the anatomical descriptions; MDE and AA wrote the manuscript. MDE and SRM built the figs. DY and AMC revised it critically. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marcos D. Ercoli.

Electronic supplementary material

ESM 1

Representatives of studied pachyrukhine taxa. Paedotherium bonaerense MACN Pv 7253 (a-c), P. typicum PVL 3386 (d-f), Tremacyllus MACN Pv 2434 (g-i), P. minor MLP 29-IX-1-116 (j), and P. borrelloi MLP 57-X-10-21(k). Crania are illustrated in ventral (a, d, g), dorsal (b, e, h), and lateral (c, f, i, j, k) views. Scale bars = 10 mm (PDF 956 kb)

ESM 2

Three different views of the orbital structures of pachyrukhines, illustrated on Paedotherium bonaerense (MACN A 1251–52). (PDF 1223 kb)

Appendix 1. List of analyzed fossil and extant specimens. Preserved main regions are indicated in the case of fossil specimens: C = cranium, V = cervical vertebrae. All extant specimens and indicated fossil ones (ft) were used to calculate facial tilting

Appendix 1. List of analyzed fossil and extant specimens. Preserved main regions are indicated in the case of fossil specimens: C = cranium, V = cervical vertebrae. All extant specimens and indicated fossil ones (ft) were used to calculate facial tilting

Fossil specimens

Paedotherium bonaerense

MACN A 1251-52 (C, V, ft), MACN A 7214 (C, ft), MACN Pv 7520 (V), MACN Pv 18098-100 (C, ft); MLP 99-X-2-1 (C, V, ft); IDGYM s/n (C); MMP 158-S (C, V), 1655-M (C, ft); Cerdeño and Bond (1998) (C)

P. typicum

MACN Pv 6436 (C, V); MLP 12-1782 (C), MLP 52-IX-28-14 (C, ft); MMP 698-S (C, V), MMP 1008-M (C, V, ft), PVL 3386 (C), Kraglievich (1926) (C, V), Cerdeño and Bond (1998) (C)

P. minor

MLP 29-IX-2-20 (C)

P. cf. P. minor

MLP 55-IV-28-82 (C)

Tremacyllus spp.

FMNH P 14456 (C, V, ft), FMNH P 14465 (C, ft); MACN Pv 2434 (C, V, ft), MACN Pv 2913 (C, ft), MACN Pv 8157 (C, V, ft), MLP 95-III-31-15 (C)

Extant specimens

Cavia aperea

MACN Ma 27.7, MMP ND 83

Chinchilla chinchilla

MACN Ma 45.11, MACN Ma 16267

Ctenomys frater

CML 7235, MACN Ma 27.122

Cynomys ludovicianus

FMNH 14964, FMNH 58999

Dolichotis salinicola

FMNH 48019, MACN Ma 17366

Heterohyrax brucei

FMNH 18842, FMNH 104600

Lepus capensis

FMNH 42407; MACN Ma 26084

Ratufa affinis

FMNH 68746, FMNH 68747

Tragulus kanchil

FMNH 68768, FMNH 68778

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercoli, M.D., Álvarez, A., Youlatos, D. et al. Tracing the Paleobiology of Paedotherium and Tremacyllus (Pachyrukhinae, Notoungulata), the Latest Sciuromorph South American Native Ungulates – Part II: Orbital, Auditory, and Occipito-Cervical Regions. J Mammal Evol 28, 411–433 (2021). https://doi.org/10.1007/s10914-020-09518-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-020-09518-5

Keywords

Navigation