Skip to main content
Log in

Locomotion in Rodents and Small Carnivorans: Are they So Different?

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Rodents and carnivorans constitute two diverse clades with variable life habits. To analyze the common ecomorphological aspects of their limbs in relation to their different substrate uses, the shape of humerus and femur was explored using 3-D geometric morphometrics. The principal components and MANOVA analyses show that the shape of the humerus is similarly related to the substrate use and taxonomy, and the shape of the femur is heavily influenced by taxonomic differences. Nevertheless, beneath those differences in the latter, a relation with the proposed ecological categories is also found. The stronger ecomorphological correlation of the humerus with respect to the femur may indicate a differential selective pressure on each limb. This could be reflecting the greater involvement of the forelimb over the hind limb in several activities performed with the limbs such as digging and climbing. The combined analysis of two distantly related groups with diverse ecological characteristics allows a recognition of similar biological patterns hidden under taxonomic differences. Furthermore, the study of morphological similarities and differences underlying taxonomic variability may led to a more profound understanding of the evolution of the locomotor apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams DC, Otárola-Castillo E (2013) geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393-399

    Article  Google Scholar 

  • Álvarez A, Ercoli MD, Prevosti FJ (2013) Locomotion in some small to medium-sized mammals: a geometric morphometric analysis of the penultimate lumbar vertebra, pelvis and hindlimbs. Zoology 116:356-371

    Article  Google Scholar 

  • Argot C (2002) Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 253:76-108

    Article  Google Scholar 

  • Blonder B, Lamanna C, Violle C, Enquist BJ (2014) The n-dimensional hypervolume. Global Ecol Biogeogr 23:595-609

    Article  Google Scholar 

  • Burgin CJ, Colella JP, Kahn PL, Upham NS (2018) How many species of mammals are there? J Mammal 99:1-14

    Article  Google Scholar 

  • Candela AM, Muñoz NA, García-Esponda CM (2017) The tarsal-metatarsal complex of caviomorph rodents: anatomy and functional-adaptive analysis. J Morphol 278:828-847

    Article  Google Scholar 

  • Candela AM, Picasso MB (2008) Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): indicators of locomotor behavior in Miocene porcupines. J Morphol 269:552-593

    Article  Google Scholar 

  • Cardini A, Filho JAFD, Polly PD, Elton S (2010) Biogeographic analysis using geometric morphometrics: clines in skull size and shape in a widespread African arboreal monkey. In: Elewa MTA (ed) Morphometrics for Nonmorphometricians. Springer-Verlag, Berlin, Heidelberg, pp 191-217

    Chapter  Google Scholar 

  • Cartmill M (1985) Climbing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional Vertebrate Morphology. University of Chicago Press, Chicago, pp 73–88

    Google Scholar 

  • Cassini GH, Vizcaíno SF, Bargo MS (2012) Body mass estimation in early Miocene native South American ungulates: a predictive equation based on 3D landmarks. J Zool 287:53-64

    Article  Google Scholar 

  • Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) Meshlab: an open-source mesh processing tool. In: Scarano V, De Chiara R, Erra U (eds) Eurographics Italian Chapter Conference. The Eurographics Association, pp 129-136

  • Elissamburu A, Vizcaíno SF (2004) Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). J Zool 262:145–159

    Article  Google Scholar 

  • Ercoli MD, Prevosti FJ, Álvarez A (2012) Form and function within a phylogenetic framework: locomotory habits of extant predators and some Miocene Sparassodonta (Metatheria). Zool J Linnean Soc 165:224-251

    Article  Google Scholar 

  • Fabre A-C, Cornette R, Slater G, Argot C, Peigné S, Goswami A, Pouydebat E (2013) Getting a grip on the evolution of grasping in musteloid carnivorans: a three-dimensional analysis of forelimb shape. J Evol Biol 26:1521-1535

    Article  Google Scholar 

  • Granier X, Vergne R, Pacanowski R, Barla P, Reuter P (2012) Enhancing surface features with the Radiance Scaling Meshlab Plugin. In: Chrysanthi A, Wheatley D, Romanowska I, Papadopoulos C, Murrieta-Flores P, Sly T, Earl G, Verhagen P (eds) Computer Applications and Quantitative Methods in Archaeology (CAA) 2012. Amsterdam University Press, pp 417-421

  • Hopson JA (1989) Leonard Burton Radinsky (1937-1985). In: Prothero DR, Schoch RM (eds) The Evolution of Perissodactyls. Oxford University Press, New York, pp 3-12

    Google Scholar 

  • Ivanco TL, Pellis SM, Whishaw IQ (1996) Skilled forelimb movements in prey catching and in reaching by rats (Rattus norvegicus) and opossums (Monodelphis domestica): relations to anatomical differences in motor systems. Behav Brain Res 79:163-181

    Article  CAS  Google Scholar 

  • Kay RF (2019) Leonard B. Radinsky (1937–1985), radical biologist. J Mammal Evol. https://doi.org/10.1007/s10914-019-09479-4

  • Martín-Serra A, Figueirido B, Palmqvist P (2014a) A three-dimensional analysis of morphological evolution and locomotor performance of the carnivoran forelimb. PLoS ONE 9:e85574

    Article  Google Scholar 

  • Martín-Serra A, Figueirido B, Palmqvist P (2014b) A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb. Evol Biol 14:129

    Google Scholar 

  • Maynard Smith J, Savage RJG (1956) Some locomotory adaptations in mammals. Zool J Linnean Soc 42:603-622

    Article  Google Scholar 

  • Morgan CC (2009) Geometric morphometrics of the scapula of South American caviomorph rodents (Rodentia: Hystricognathi): form, function and phylogeny. Mammal Biol 74:497-506

    Article  Google Scholar 

  • Morgan CC, Álvarez A (2013) The humerus of South American caviomorph rodents: shape, function and size in a phylogenetic context. J Zool 290:107-116

    Article  Google Scholar 

  • Muñoz NA, Cassini GH, Candela AM, Vizcaíno SF (2017) Ulnar articular surface 3-D landmarks and ecomorphology of small mammals: a case study of two early Miocene typotheres (Notoungulata) from Patagonia. Earth Env Sci Trans R Soc 106:315-323

    Google Scholar 

  • Muñoz NA, Toledo N, Candela AM, Vizcaíno SF (2019) Functional morphology of the forelimb of early Miocene caviomorph rodents from Patagonia. Lethaia 52:91-106

    Article  Google Scholar 

  • Nowak J, Paradiso JL (1983) Walker’s Mammals of the World. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Radinsky LB (1985) Approaches in evolutionary morphology: a search for patterns. Annu Rev Ecol Syst 16:1-14

    Article  Google Scholar 

  • Radinsky LB (1987) Evolution of Vertebrate Design. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Samuels JX, Meachen JA, Sakai SA (2013) Postcranial morphology and the locomotor habits of living and extinct carnivorans. J Morphol 274:121-146

    Article  Google Scholar 

  • Samuels JX, Van Valkenburgh B (2008) Skeletal indicators of locomotor adaptations in living and extinct rodents. J Morphol 269:1387-1411

    Article  Google Scholar 

  • Sargis EJ (2002) Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 254:149-185

    Article  Google Scholar 

  • Schlager S (2013) Morpho: calculations and visualizations related to geometric morphometrics. R package version 025-1 http://CRAN.R-project.org/package=Morpho

  • Schmidt A (2011) Functional differentiation of trailing and leading forelimbs during locomotion on the ground and on a horizontal branch in the European red squirrel (Sciurus vulgaris, Rodentia). Zoology 114:155-164

    Article  Google Scholar 

  • Seckel L, Janis C (2008) Convergences in scapula morphology among small cursorial mammals: an osteological correlate for locomotory specialization. J Mammal Evol 15:261-279

    Article  Google Scholar 

  • Taylor ME (1974) The functional anatomy of the forelimb of some African Viverridae (Carnivora). J Morphol 143:307-335

    Article  CAS  Google Scholar 

  • Taylor ME (1976) The functional anatomy of the hindlimb of some African Viverridae (Carnivora). J Morphol 148:227-253

    Article  CAS  Google Scholar 

  • Toledo N, Bargo MS, Vizcaíno SF (2013) Muscular reconstruction and functional morphology of the forelimb of early Miocene sloths (Xenarthra, Folivora) of Patagonia. Anat Rec 296:305-325

    Article  Google Scholar 

  • Van Valkenburgh B (1987) Skeletal indicators of locomotor behavior in living and extinct carnivores. J Vertebr Paleontol 7:162-182

    Article  Google Scholar 

  • Vizcaíno SF, Bargo MS (2019) Views on the form-function correlation and biological design. J Mammal Evol. https://doi.org/10.1007/s10914-019-09487-4

  • Wiley DF (2006) Landmark Editor 3.0. Institute for Data Analysis and Visualization. University of California, Davis

  • Youlatos D (1999) Locomotor and postural behavior of Sciurus igniventris and Microsciurus flaviventer (Rodentia, Sciuridae) in eastern Ecuador. Mammalia 63:405-416

    Article  Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric Morphometrics for Biologists: A Primer. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgments

I wish to thank the following people and institutions: the editors of the Special Issue “Tribute to Radinsky” G.H. Cassini, N. Toledo, and S. F. Vizcaíno for inviting me to participate. E. Westwig (AMNH), U.F.J. Pardiñas (CNP), B. Patterson and W. Stanley (FMNH), P. Teta, D. Flores, G.H. Cassini, and S. Lucero (MACN), D. Verzi and I. Olivares (MLP), D. Romero (MMPMa), and K. Zyskowski (YPM) for facilitating access to the mammalogy collections. E. Delson (AMNH) for allowing me to use an extra laser scanner to increase the sample of specimens from the AMNH. Virginia A. Cobos and two anonymous reviewers for their useful comments that improved this work. G.H. Cassini for assistance with statistical analysis. This is a contribution to the projects PICT 2017-1081 of the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) to M. S. Bargo and N867 of the Universidad Nacional de La Plata (UNLP) to S. F. Vizcaíno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahuel A. Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, N.A. Locomotion in Rodents and Small Carnivorans: Are they So Different?. J Mammal Evol 28, 87–98 (2021). https://doi.org/10.1007/s10914-020-09515-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-020-09515-8

Keywords

Navigation