Skip to main content

Advertisement

Log in

Environmental Drivers and Distribution Patterns of Carnivoran Assemblages (Mammalia: Carnivora) in the Americas: Past to Present

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Understanding species distributions and the variation of assemblage structure in time and space are fundamental goals of biogeography and ecology. Here, we use an ecological niche modeling and macroecological approach in order to assess whether constraints patterns in carnivoran richness and composition structures in replicated assemblages through time and space should reflect environmental filtering through ecological niche constraints from the Last Inter-glacial (LIG), Last Glacial Maximum (LGM) to the present (C) time. Our results suggest a diverse distribution of carnivoran co-occurrence patterns at the continental scale as a result of spatial climatic variation as an important driver constrained by the ecological niches of the species. This influence was an important factor restructuring assemblages (more directly on richness than composition patterns) not only at the continental level, but also from regional and local scales and this influence was geographically different throughout the space in the continent. These climatic restrictions and disruption of the niche during the environmental changes at the LIG-LGM-C transition show a considerable shift in assemblage richness and composition across the Americas, which suggests an environmental filtering mainly during the LGM, explaining between 30 and 75% of these variations through space and time, with more accentuated changes in North than South America. LGM was likely to be critical in species functional adaptation and distribution and therefore on assemblage structuring and rearranging from continental to local scales through time in the continent. Still, extinction processes are the result of many interacting factors, where climate is just one part of the picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agosta SJ, Bernardo J (2013) New macroecological insights into functional constraints on mammalian geographical range size. Proc Biol Sci 280:20130140. https://doi.org/10.1098/rspb.2013.0140

    Article  PubMed  PubMed Central  Google Scholar 

  • Araujo BBA, Oliveira-Santos LGR, Lima-Ribeiro MS, Diniz-Filho F, Fernandez FAS (2017) Bigger kill than chill: the uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quat Int 431:216–222. https://doi.org/10.1016/j.quaint.2015.10.045

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753. https://doi.org/10.1111/j.1466-8238.2007.00359.x

    Article  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728. https://doi.org/10.1111/j.1365-2699.2006.01482.x

    Article  Google Scholar 

  • Arias-Alzate A (2016) Patrones de simpatría y efectos del cambio climático en carnívoros (Mammalia: Carnivora) de América. Tesis de Doctorado, Universidad Nacional Autónoma de México, México City

    Google Scholar 

  • Arias-Alzate A, González-Maya JF, Arroyo-Cabrales J, Martínez-Meyer E (2017) Wild felid range shift due to climatic constraints in the Americas: a bottleneck explanation for extinct felids? J Mammal Evol 24:427–438. https://doi.org/10.1007/s10914-016-9350-0

  • Arroyo-Cabrales J, Polaco OJ, Johnson E, Ferrusquía-Villafranca I (2010) A perspective on mammal biodiversity and zoogeography in the late Pleistocene of México. Quat Int 212:187–197. https://doi.org/10.1016/j.quaint.2009.05.012

    Article  Google Scholar 

  • Bacon CD, Silvestro D, Jaramillo C, Tilston, B, Chakrabarty P (2015) Biological evidence supports an early and complex emergence of the isthmus of Panama. Proc Natl Acad Sci USA 112:6110–6115. https://doi.org/10.1073/pnas.1423853112

    Article  CAS  PubMed  Google Scholar 

  • Barnett R, Barnes I, Phillips MJ, Martin LD, Harington CR, Leonard JA, Cooper A (2005) Evolution of the extinct sabretooths and the American cheetah-like cat. Curr Biol 15:R589–R590. https://doi.org/10.1016/j.cub.2005.07.052

    Article  CAS  PubMed  Google Scholar 

  • Barnosky AD, Lindsey EL (2010) Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat Int 217:10–29. https://doi.org/10.1016/j.quaint.2009.11.017

  • Berta A (1985) The status of Smilodon in North and South America. Contrib Sci Nat Hist Mus LA County 370:1–15

  • Beyer HL (2004) Hawth’s analysis tools for ArcGIS. http://www.spatialecology.com/htools

  • Blois JL, Gotelli NJ, Behrensmeyer AK, Faith TS, Lyons K, Williams JW, Amatangelo Kl, Bercovici A, Du A, Eronen JT, Graves GR, Jud N, Labandeira C, Looy CV, McGill B, Patterson D, Potts R, Riddle B, Terry R, Tóth A, Villaseñor A, Wing S (2014) A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary. Ecography 37:1095–1108. https://doi.org/10.1111/ecog.00779

  • Blois JL, Hadly EA (2009) Mammalian response to Cenozoic climatic change. Annu Rev Earth Planet Sci 37:181–208. https://doi.org/10.1146/annurev.earth.031208.100055

  • Blois JL, Williams JW, Fitzpatrick MC, Ferrier S, Veloz SD, He F, Liu Z, Manion G (2013) Modeling the climatic drivers of spatial patterns in vegetation composition since the last glacial maximum. Ecography 36:460–473. https://doi.org/10.1111/j.1600-0587.2012.07852.x

    Article  Google Scholar 

  • Blomberg SP, Garland T Jr (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910. https://doi.org/10.1046/j.1420-9101.2002.00472.x

  • Bofarull A, Royo A, Fernández MH, Ortiz-Jaureguizar E, Morales J (2008) Influence of continental history on the ecological specialization and macroevolutionary processes in the mammalian assemblage of South America: differences between small and large mammals. BMC Evol Biol 8:97. https://doi.org/10.1186/1471-2148-8-97

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y,Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the mid-Holocene and last glacial maximum – Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Clim Past 3:279–296. https://doi.org/10.5194/cp-3-279-2007

    Article  Google Scholar 

  • Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecology 76:2028–2043. https://doi.org/10.2307/1941678

    Article  Google Scholar 

  • Brunsdon C, Fotheringham AS, Charlton ME (2010) Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28:281–298. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x

  • Canto J, Yáñez J, Rovira J (2010) Estado actual del conocimiento de los mamíferos fósiles de Chile. Estud Geol 66:255–284. https://doi.org/10.3989/egeol.39778.055

    Article  Google Scholar 

  • Cardillo M, Mace GM, Gittleman JL, Purvis A (2006) Latent extinction risk and the future battlegrounds of mammal conservation. Proc Natl Acad Sci USA 103:4157–4161. https://doi.org/10.1073/pnas.0510541103

    Article  CAS  PubMed  Google Scholar 

  • Cione AL, Tonni EP, Bargo S, Bond M, Candela MA, Carlini AA, Deschamps CM, Dozo MT, Goin FJ, Montalvo CI, Nasif N, Noriega JI, Jaureguizar EO, Pascual R, Prado JL, Reguero AM, Scillato-yané GJ, Soibelzon L, Verzi DH, Carolina E, Vizcaíno SF (2007) Mamíferos continentales del Mioceno tardío a la actualidad en la Argentina: cincuenta años de estudios. Ameghiniana 11:257–278

  • Cione AL, Tonni EP, Soibelzon L (2003) The broken zig-zag: Late Cenozoic large mammal and tortoise extinction in South America. Rev del Mus Argentino Ciencias Nat 5:1–19

  • Cione AL, Tonni EP, Soibelzon L (2009) Did humans cause the late Pleistocene-early Holocene mammalian extinctions in South America in a context of shrinking open areas? In: Haynes G (ed) Vertebrate Paleobiology and Paleoanthropology. Springer S, pp 125–144

  • Cisneros JC (2005) New Pleistocene vertebrate fauna from El Salvador. Rev Bras Paleontol 8:239–255. https://doi.org/10.4072/rbp.2005.3.09

    Article  Google Scholar 

  • Cohen KM, Gibbard PL (2010) Global chronostratigraphical correlation table for the last 2.7 million years. Utrecht University repository

  • Collins MD, Simberloff D, Connor EF (2011) Binary matrices and checkerboard distributions of birds in the Bismarck archipelago. J Biogeogr 38:2373–2383. https://doi.org/10.1111/j.1365-2699.2011.02506.x

    Article  Google Scholar 

  • Croft DA (2001) Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Divers Distrib 7:271–287. https://doi.org/10.1046/j.1366-9516.2001.00117.x

    Article  Google Scholar 

  • Croitor R, Brugal J-P (2010) Ecological and evolutionary dynamics of the carnivore community in Europe during the last 3 million years. Quat Int 212:98–108. https://doi.org/10.1016/j.quaint.2009.06.001

    Article  Google Scholar 

  • Culver M, Johnson WE, Pecon-Slattery J, O’Brien SJ (2000) Genomic ancestry of the American puma (Puma concolor). J Hered 91:186–197. https://doi.org/10.1093/jhered/91.3.186

  • Davies TJ, Buckley LB, Grenyer R, Gittleman JL (2011) The influence of past and present climate on the biogeography of modern mammal diversity. Philos Trans R Soc B Biol Sci 366:2526–2535. https://doi.org/10.1098/rstb.2011.0018

  • Davies TJ, Purvis A, Gittleman JL (2009) Quaternary climate change and the geographic ranges of mammals. Am Nat 174:297–307. https://doi.org/10.1086/603614

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292:673–679

  • De Vivo M, Carmignotto AP (2004) Holocene vegetation change and the mammal faunas of South America and Africa. J Biogeogr 31:943–957. https://doi.org/10.1111/j.1365-2699.2004.01068.x

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2016) InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba

  • Diniz‐Filho JAF, Rodríguez MA, Bini LM, Olalla‐Tarraga MA, Cardillo M, Nabout JC, Hortal J, Hawkins BA (2009) Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. J Biogeogr 36:2222–2236. https://doi.org/10.1111/j.1365-2699.2009.02163.x

    Article  Google Scholar 

  • Dundas R (1999) Quaternary records of the dire wolf, Canis dirus, in North and South America. Boreas 28:375–385

  • Dyke AS (2005) Late Quaternary vegetation history of northern North America based on pollen, macrofossil, and faunal remains. Géographie Phys Quat 59:211. https://doi.org/10.7202/014755ar

    Article  Google Scholar 

  • Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci USA 97:9115–9120. https://doi.org/10.1073/pnas.97.16.9115

    Article  CAS  PubMed  Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77. https://doi.org/10.1111/j.1600-0587.2008.05505.x

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • Eronen JT, Rook L (2004) The Mio-Pliocene European primate fossil record: dynamics and habitat tracking. J Hum Evol 47:323–341. https://doi.org/10.1016/j.jhevol.2004.08.003

  • ESRI (2001) ArcGIS 9.3. Environmental Systems Research Institute, Redlands, California

  • Farrera I, Harrison SP, Prentice IC, Ramstein G, Guiot J, Bartlein PJ, Bonnefille R, Bush M, Cramer W, von Grafenstein U, Holmgren K, Hooghiemstra H, Hope G, Jolly D, Lauritzen S-E, Ono Y, Pinot S, Stute M, Yu G (1999) Tropical climates at the last glacial maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Clim Dyn 15:823–856. https://doi.org/10.1007/s003820050317

  • Fergnani PN, Ruggiero A (2015) Ecological diversity in south American mammals: their geographical distribution shows variable associations with phylogenetic diversity and does not follow the latitudinal richness gradient. PLoS One 10:e0128264. https://doi.org/10.1371/journal.pone.0128264

  • Ferraz K, Beisiegel B, De Paula R, Sana DA, De Campos CB, De Oliveira TG, Desbiez ALJ (2012) How species distribution models can improve cat conservation-jaguars in Brazil. CATNews 38–42

  • Ferrusquía-Villafranca I, Arroyo-Cabrales J, Martínez-Hernández E, Gama-Castro J, Ruiz-González J, Polaco OJ, Johnson E (2010) Pleistocene mammals of Mexico: a critical review of regional chronofaunas, climate change response and biogeographic provinciality. Quat Int 217:53–104. https://doi.org/10.1016/j.quaint.2009.11.036

  • Fotheringham AS, Charlton ME, Brunsdon C (1998) Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environ Plan A Econ Sp 30:1905–1927. https://doi.org/10.1068/a301905

  • Fotheringham, AS, Brunsdon C, Charlton M (2002) Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. John Wiley and Sons, Chichester

    Google Scholar 

  • Gaston KJ (2003) The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford

    Google Scholar 

  • Getis A, Ord JK (2010) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x

    Article  Google Scholar 

  • Giarla TC, Jansa SA (2015) The impact of Quaternary climate oscillations on divergence times and historical population sizes in Thylamys opossums from the Andes. Mol Ecol 24:2495–2506. https://doi.org/10.1111/mec.13173

  • Gittleman JL, Gompper ME (2005) Plight of predators: the importance of carnivores for understanding patterns of biodiversity and extinction risk. In: Barbosa P, Castellanos I (eds) Ecology of Predator-Prey Interactions. Oxford University Press, Oxford, pp 371–388

  • González-Maya JF (2015) Conservación, diversidad funcional y riesgo de extinción en mamíferos neotropicales a múltiples escalas. Tesis de Doctorado, Universidad Nacional Autónoma de México, México City

  • González-Maya JF, Arias-Alzate A, Granados-Peña R, Mancera-Rodríguez NJ, Ceballos G (2016a) Environmental determinants and spatial mismatch of mammal diversity measures in Colombia. Anim biodivers Conserv 39:77–87. https://doi.org/10.32800/abc.2016.39.0077

  • González-Maya JF, Víquez-R LR, Arias-Alzate A, Belant J, Ceballos G (2016b) Spatial patterns of species richness and functional diversity in Costa Rican terrestrial mammals: implications for conservation. Divers Distrib 22:43–56. https://doi.org/10.1111/ddi.12373

  • Goswami A, Friscia A (eds) (2010) Carnivoran Evolution. Cambridge University Press, New York

    Google Scholar 

  • Gotelli NJ, Ulrich W (2012) Statistical challenges in null model analysis. Oikos 121:171–180. https://doi.org/10.1111/j.1600-0706.2011.20301.x

    Article  Google Scholar 

  • Graham RW (2001) Late Quaternary biogeography and extinction of proboscideans in North America. In: Cavaretta, G, Giola P, Mussi M, Palombo MR (eds) The World of Elephants (Lat Terra Degli Elephanti). Consiglio Nazionale della Richerche, Rome, pp 707–709

    Google Scholar 

  • Graham RW, Mead JI (1987) Environmental fluctuations and evolution of mammalian faunas during the last deglaciation in North America. In: North America and Adjacent Oceans During the Last Deglaciation. Geological Society of America, Boulder, pp 371–402

  • Green JR, Ebdon D (1977) Statistics in geography: a practical approach. Appl Stat 26:341. https://doi.org/10.2307/2346984

  • Gregory-Wodzicki KM (2000) Uplift history of the central and northern Andes: a review. Geol Soc Am Bull 112:1091–1105. https://doi.org/10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Hubbe A, Hubbe M, Neves W (2007) Early Holocene survival of megafauna in South America. J Biogeogr 34:1642–1646. https://doi.org/10.1111/j.1365-2699.2007.01744.x

    Article  Google Scholar 

  • Jernvall J, Fortelius M (2004) Maintenance of trophic structure in fossil mammal communities: site occupancy and taxon resilience. Am Nat 164:614–624. https://doi.org/10.1086/424967

  • Johnson WE, Eizirik E, Peco-Slattery J, Murphy WJ, Antunes A, Teeling E, O’Brien SJ (2006) The late Miocene radiation of modern Felidae: a genetic assessment. Science 311:73–77. https://doi.org/10.1126/science.1122277

  • Levinsky I (2010) Species Distributions and Climate Change-Linking the Past and the Future. PhD Dissertation, University of Copenhagen, Copenhagen

  • Levinsky I, Araújo MB, Nogués-Bravo D, Haywood AM, Valdes PJ, Rahbek C (2013) Climate envelope models suggest spatio-temporal co-occurrence of refugia of African birds and mammals. Glob Ecol Biogeogr 22:351–363. https://doi.org/10.1111/geb.12045

    Article  Google Scholar 

  • Li X, Jiang G, Tian H, Xu L, Yan C, Wang Z, Wei F, Zhang Z (2014) Human impact and climate cooling caused range contraction of large mammals in China over the past two millennia. Ecography 38(1):74–82. https://doi.org/10.1111/ecog.00795

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

  • Lorenzen ED, Nogués-Bravo D, Orlando L, Weinstock J, Binladen J, Marske KA, Ugan A, Borregaard MK, Gilbert MTP, Nielsen R, Ho SYW, Goebel T, Graf KE, Byers D, Stenderup JT, Rasmussen M, Campos PF, Leonard JA, Koepfli K-P, Froese D, Zazula G, Stafford TW, Aaris-Sørensen K, Batra P, Haywood AM, Singarayer JS, Valdes PJ, Boeskorov G, Burns JA, Davydov SP, Haile J, Jenkins DL, Kosintsev P, Kuznetsova T, Lai X, Martin LD, McDonald HG, Mol D, Meldgaard M, Munch K, Stephan E, Sablin M, SommerRS, SipkoT, Scott E, Suchard MA, Tikhonov A, Willerslev R, Wayne RK, Cooper A, Hofreiter M, Sher A, Shapiro B, Rahbek C, Willerslev E (2011) Species-specific responses of late Quaternary megafauna to climate and humans. Nature 479:359–364. https://doi.org/10.1038/nature10574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg P, Ranta E, Ripa J, Kaitala V (2000) Population variability in space and time. Trends Ecol Evol 15:460–464. https://doi.org/10.1016/S0169-5347(00)01981-9

    Article  CAS  PubMed  Google Scholar 

  • Lyons SK (2003) A quantitative assessment of the range shifts of Pleistocene mammals. J Mammal 84:385–402. https://doi.org/10.1644/1545-1542(2003)084<0385:AQAOTR>2.0.CO;2

    Article  Google Scholar 

  • Marino J, Bennett M, Cossios D, Iriarte A, Lucherini M, Pliscoff P, Sillero-Zubiri C, Villalba L, Walker S (2011) Bioclimatic constraints to Andean cat distribution: a modelling application for rare species. Divers Distrib 17:311–322. https://doi.org/10.1111/j.1472-4642.2011.00744.x

  • Marshall LG, Webb SD, Sepkoski JJ, Raup DM (1982) Mammalian evolution and the great American interchange. Science 215:1351–1357. https://doi.org/10.1126/science.215.4538.1351

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Meyer E, Peterson AT, Hargrove WW (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob Ecol Biogeogr 13:305–314. https://doi.org/10.1111/j.1466-822X.2004.00107.x

  • McPherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41:811–823. https://doi.org/10.1111/j.0021-8901.2004.00943.x

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x

  • Morris AB, Graham CH, Soltis DE, Soltis PS (2010) Reassessment of phylogeographical structure in an eastern north American tree using Monmonier’s algorithm and ecological niche modelling. J Biogeogr 37:1657–1667. https://doi.org/10.1111/j.1365-2699.2010.02315.x

    Article  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, RA Kass JM, Uriarte M, Anderson RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205. https://doi.org/10.1111/2041-210X.12261

  • Nogués-Bravo D (2009) Predicting the past distribution of species climatic niches. Glob Ecol Biogeogr 18:521–531. https://doi.org/10.1111/j.1466-8238.2009.00476.x

    Article  Google Scholar 

  • Nogués-Bravo D, Rodríguez J, Hortal J, Batra P, Araújo MB (2008) Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol 6:e79. https://doi.org/10.1371/journal.pbio.0060079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyakatura K, Bininda-Emonds OR (2012) Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biol 10:12. https://doi.org/10.1186/1741-7007-10-12

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690. https://doi.org/10.1007/s11135-006-9018-6

    Article  Google Scholar 

  • O’Regan HJ, Turner A, Wilkinson DM (2002) European quaternary refugia: a factor in large carnivore extinction? J Quaternary Sci 17:789–795. https://doi.org/10.1002/jqs.693

  • Ord JK, Getis A (2010) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27:286–306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x

  • Otto-Bliesner BL, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last glacial maximum and Holocene climate in CCSM3. J Climatol 19:2526–2544. https://doi.org/10.1175/JCLI3748.1

    Article  Google Scholar 

  • Palombo MR, Alberdi MT, Azanza B, Giovinazzo C, Prado JL, Sardella R (2009) How did environmental disturbances affect carnivoran diversity? A case study of the Plio-Pleistocene Carnivora of the North-Western Mediterranean. Evol Ecol 23:569–589. https://doi.org/10.1007/s10682-008-9256-2

    Article  Google Scholar 

  • Peterson AT, Papeş M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560. https://doi.org/10.1111/j.2007.0906-7590.05102.x

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Bastos-Araújo M (2011) Ecological Niches and Geographic Distributions. Princeton University Press, Princeton

    Book  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893. https://doi.org/10.1111/ecog.03049

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

  • Polly PD (2013) Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment. In: Goswami A, Friscia A (eds) Carnivoran Evolution. Cambridge University Press, Cambridge, pp 374–410

  • Porter SC (1981) Pleistocene glaciation in the southern Lake District of Chile. Quaternary Res 16:263–292. https://doi.org/10.1016/0033-5894(81)90013-2

    Article  CAS  Google Scholar 

  • Prevosti FJ, Reguero M (2000) Catalogo de tipos de vertebrados fósiles del museo de la Plata. I. Carnivora. Serie técnica y didáctica del Museo de la Plata, Buenos Aires

  • Prevosti FJ, Vizcaíno S (2006) Paleoecology of the large carnivore guild from the late Pleistocene of Argentina. Acta Palaeontol Polonica 51:407–422

  • Prevosti FJ, Rincón AD (2007) A new fossil canid assemblage from the late Pleistocene of northern South America: the canids of the Inciarte asphalt pit (Zulia, Venezuela), fossil record and biogeography. J Paleontol 81:1053–1065. https://doi.org/10.1666/pleo05-143.1

  • Prevosti FJ, Soibelzon L (2012) Evolution of the South American carnivores (Mammalia, Carnivora): a paleontological perspective. In: Patterson BD, Costa LP (eds) Bones, Clones, and Biomes: An Extended History of Recent Neotropical Mammals. University of Chicago Press, Chicago, pp 102–122

  • Prevosti FJ, Forasiepi AM (2018) Evolution of South American Mammalian Predators during the Cenozoic: Paleobiogeographic and Paleoenvironmental Contingencies. Springer International Publishing, Cham

  • Prevosti FJ, Noriega J, Garcia-Esponda C, Ferrero B (2005) Primer registro de Dusicyon gymnocercus (Fisher, 1814) (Carnivora: Canidae) en el pleistoceno de Entre Ríos (Argentina). Revista Española Paleontología 20:159–167

  • Prevosti FJ, Forasiepi A, Zimicz N (2013) The evolution of the Cenozoic terrestrial mammalian predator guild in South America: competition or replacement? J Mammal Evol 20:3–21. https://doi.org/10.1007/s10914-011-9175-9

  • Prideaux GJ, Roberts RG, Megirian D, Westaway KE, Hellstrom JC, Olley JM (2007) Mammalian responses to Pleistocene climate change in southeastern Australia. Geology 35(1):33–36. https://doi.org/10.1130/G23070A.1

  • Rincón AD, Prevosti FJ, Parra GE (2011) New saber-toothed cat records (Felidae: Machairodontinae) for the Pleistocene of Venezuela, and the great American biotic interchange. J Vertebr Paleontol 31:468–478. https://doi.org/10.1080/02724634.2011.550366

    Article  Google Scholar 

  • Root T (1988) Environmental factors associated with avian distributional boundaries. J Biogeogr 15:489. https://doi.org/10.2307/2845278

    Article  Google Scholar 

  • Safi K, Cianciaruso M V, Loyola RD, Brito D, Armour-Marshall K, Diniz-Filho JAF (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philos Trans R Soc B Biol Sci 366:2536–2544. https://doi.org/10.1098/rstb.2011.0024

    Article  Google Scholar 

  • Santika T (2011) Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data. Glob Ecol Biogeogr 20:181–192. https://doi.org/10.1111/j.1466-8238.2010.00581.x

    Article  Google Scholar 

  • Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues ASL, Stuart SN, Temple HJ, Baillie J, Boitani L, Lacher TE, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Chapman R, Cokeliss Z, Collen B, Conroy J, Cooke JG, da Fonseca GAB, Derocher AE, Dublin HT, Duckworth JW, Emmons L, Emslie RH, Festa-Bianchet M, Foster M, Foster S, Garshelis DL, Gates C, Gimenez-Dixon M, Gonzalez S, Gonzalez-Maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-Taylor C, Hussain SA, Ishii N, Jefferson T A, Jenkins RKB, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Mace GM, Mallon DP, Masi M, McKnight MW, Medellin RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WRL, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, Reeves RR, Reilly SB, Reynolds JE, Rondinini C, Rosell-Ambal RG, Rulli M, Rylands AB, Savini S, Schank CJ, Sechrest W, Self-Sullivan C, Shoemaker A, Sillero-Zubiri C, De Silva N, Smith DE, Srinivasulu C, Stephenson PJ, van Strien N, Talukdar BK, Taylor BL, Timmins R, Tirira DG, Tognelli MF, Tsytsulina K, Veiga LM, Vie J-C, Williamson EA, Wyatt SA, Xie Y, Young BE (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230. https://doi.org/10.1126/science.1165115

  • Silvestro D, Antonelli A, Salamin N, Quental TB (2015) The role of clade competition in the diversification of North American canids. Proceedings of the National Academy of Sciences 112 (28):8684–8689. https://doi.org/10.1073/pnas.1502803112

  • Soares S de A (2013) The role of competition in structuring ant communities: a review. Oecologia Aust 17:271–281. https://doi.org/10.4257/oeco.2013.1702.08

  • Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods, and assumptions. Proc Natl Acad Sci USA 106:19644–19650. https://doi.org/10.1073/pnas.0901637106

  • Soibelzon L, Prevosti FJ (2008) Los carnívoros (Carnivora, Mammalia) terrestres del Cuaternario de América del Sur. In: Pons GX, Vicens D (eds) Geomorfología Litoral i Quaternari. Homenatge a Joan Cuerda Barceló. Monografías de la Sociedad de Historia Natural de las Baleares, Palma de Mallorca, pp 49–68

    Google Scholar 

  • Steinitz O, Heller J, Tsoar A, Rotem D, Kadmon R (2006) Environment, dispersal and patterns of species similarity. J Biogeogr 33:1044–1054. https://doi.org/10.1111/j.1365-2699.2006.01473.x

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist 133(2):240–256

  • Svenning J-C, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573. https://doi.org/10.1111/j.1461-0248.2004.00614.x

  • Svenning J-C, Skov F (2007) Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol Lett 10:453–460. https://doi.org/10.1111/j.1461-0248.2007.01038.x

    Article  PubMed  Google Scholar 

  • Thibault KM, Brown JH (2008) Impact of an extreme climatic event on community assembly. Proc Natl Acad Sci USA 105:3410–3415. https://doi.org/10.1073/pnas.0712282105

    Article  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta M a, Peterson a t, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427(6970):145–148. https://doi.org/10.1038/nature02121

  • Thuiller W, Lavorel S, Araujo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357. https://doi.org/10.1111/j.1466-822X.2005.00162.x

  • Varela L, Fariña RA, (2016) Co-occurrence of mylodontid sloths and insights on their potential distributions during the late Pleistocene. Quaternary Res 85(1):66–74. https://doi.org/10.1016/j.yqres.2015.11.009

  • Villavicencio NA, Lindsey EL, Martin FM, Borrero LA, Moreno PI, Marshall CR, Barnosky AD (2016) Combination of humans, climate, and vegetation change triggered late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography 39:125–140. https://doi.org/10.1111/ecog.01606

  • Wagenmaker EJ, Farrell S (2004) AIC model selection using Akaike weights. Psychon Bull Rev 11:192–196

    Article  Google Scholar 

  • Webb SD (2006) The great American biotic interchange: patterns and processes. Ann Missouri Bot Gard 93:245–257

  • Wilson D, Mittermeier RA (2009) Handbook of the Mammals of the World. Vol. I. Carnivores. Lynx Edicions, Barcelona

    Google Scholar 

  • Wilson DE, Reeder DM (eds) (2005) Mammal species of the world: a taxonomic and geographic reference. Third Edition. Johns Hopkins University Press, Baltimore

  • Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes JA, Guisan A, Heikkinen RK, Høye TT, Kühn I, Luoto M, Maiorano L, Nilsson MC, Normand S, Öckinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrup P, Svenning JC (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews 88(1):15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x

Download references

Acknowledgements

We would like to thank H. Zarza, Joe J. Figel, and A. Townsend Peterson for support, pre-review, and insightful comments on the manuscript. A. Arias-Alzate acknowledges the Posgrado en Ciencias Biológicas, the Instituto de Biología-UNAM, and the scholarship and financial support for the Doctoral Degree Program in Biological Sciences provided by the Consejo Nacional de Ciencia y Tecnología of México (CONACyT) (scholarship 280993). We also thank the reviewers for their comments, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Arias-Alzate.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias-Alzate, A., González-Maya, J.F., Arroyo-Cabrales, J. et al. Environmental Drivers and Distribution Patterns of Carnivoran Assemblages (Mammalia: Carnivora) in the Americas: Past to Present. J Mammal Evol 27, 759–774 (2020). https://doi.org/10.1007/s10914-020-09496-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-020-09496-8

Keywords

Navigation