Skip to main content
Log in

Paleobiology of Argyrolagus (Marsupialia, Argyrolagidae): an astonishing case of bipedalism among South American mammals

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Argyrolagus constitutes, both for its craniodental and postcranial anatomy, one of the most notably specialized South American Neogene metatherians. Differentiating it from any other South American mammal, bipedal jumping has been proposed for Argyrolagus, even though this hypothesis was not supported by morphofunctional studies. Here, we describe the postcranium of A. scaglai (from the Pliocene of Argentina), perform a functional analysis, and interpret it against a varied background of locomotor adaptations of extant mammals. The configuration of joints, the degree of development and location of muscular insertions were mainly analyzed, and functional indices were evaluated. This study indicates that Argyrolagus had stabilized glenohumeral and humeroulnar joints, a great development of the arm retractors, flexors-extensors of the digits, pronator, and supinator muscles, low restrictive humeroradial joint, powerful extensor muscles of the hip, knee, and ankle, good development of the iliac muscle, and restrictive hind limb joints. Joint configurations are interpreted to be optimal to resist the impacts during jumping, avoiding dislocation, compatible with digging activity. A compromise between the capacities to dig and manipulate objects is inferred. It is concluded that Argyrolagus had bipedal jumping locomotion as well as good capacity to dig, constituting an astonishing case of convergence with the small bipedal rodents and small Australian macropodids. We suggest that bipedal jumping in Miocene and Pliocene argyrolagids should not be necessarily related to a particular arid environment. Finally, we evaluate the importance of postcranial features to understand the phylogenetic relationships of Argyrolagidae in a comprehensive phylogeny of Metatheria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abello MA, Candela AM (2010) Postcranial skeleton of the Miocene marsupial Palaeothentes (Paucituberculata, Palaeothentidae): paleobiology and phylogeny. J Vertebr Paleontol 30(5): 1515–1527

  • Abello MA, Candela AM (2017) Comportamiento locomotor de Argyrolagus Ameghino (Marsupialia: Polydolopimorphia: Argyrolagidae) del Neógeno de Argentina. PE-APA 18 (2): R5

  • Abello A, Montalvo CI, Goin FJ (2002) Marsupiales del Mioceno superior de Caleufú (La Pampa, Argentina). Ameghiniana 39(4): 433–442

  • Abello MA, Toledo N, Ortiz-Jaureguizar E (2018) Evolution of South American Paucituberculata (Metatheria: Marsupialia): adaptive radiation and climate changes at the Eocene-Oligocene boundary. Hist Biol. https://doi.org/10.1080/08912963.2018.1502286

  • Alexander RM, Vernon A (1975) The mechanics of hopping by kangaroos (Macropodidae). J Zool 177(2): 265–303

    Google Scholar 

  • Amico GC, Rodríguez-Cabal MA, Aizen MA (2009) The potential key seed-dispersing role of the arboreal marsupial Dromiciops gliroides. Acta Oecol 35(1):8–13

  • Argot C (2001) Functional–adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247(1):51–79

  • Argot C (2002) Functional–adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 253(1): 76–108

    PubMed  Google Scholar 

  • Argot C (2003a) Postcranial functional adaptations in the South American Miocene borhyaenoids (Mammalia, Metatheria): Cladosictis, Pseudonotictis and Sipalocyon. Alcheringa 27(4): 303–356

    Google Scholar 

  • Argot C (2003b) Functional–adaptive anatomy of the axial skeleton of some extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 255(3): 279–300.

  • Argot C (2003c) Functional adaptations of the postcranial skeleton of two Miocene borhyaenoids (Mammalia, Metatheria), Borhyaena and Prothylacinus, from South America. Palaeontology 46(6): 1213–1267

  • Babot MJ, García-López DA (2016) Redescription of the argyrolagid Microtragulus bolivianus (Metatheria, Polydolopimorphia, Bonapartheriiformes) based on new remains from northwestern Argentina. Palaeontol Electron 19.2.23A:1–23

    Google Scholar 

  • Barnett CH, Napier JR (1953a) The form and mobility of the fibula in metatherian mammals. J Anat 87:207–2013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett CH, Napier JR (1953b) The rotatory mobility of the fibula in eutherian mammals. J Anat 87:11–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartholomew GA, Cary GR (1954) Locomotion in pocket mice. J Mammal 35(3):386–392

    Google Scholar 

  • Bartholomew GA, Caswell HH (1951) Locomotion in kangaroo rats and its adaptive significance. J Mammal 32(2):155–169

    Google Scholar 

  • Bassarova M, Janis CM, Archer M (2009) The calcaneum—on the heels of marsupial locomotion. J Mammal Evol 16(1):1–23

    Google Scholar 

  • Baudinette RV, Halpern EA, Hinds DS (1993) Energetic cost of locomotion as a function of ambient temperature and during growth in the marsupial Potorous tridactylus. J Exp Biol 174(1): 81–95

    CAS  PubMed  Google Scholar 

  • Beck RMD (2012) An ‘ameridelphian’ marsupial from the early Eocene of Australia supports a complex model of Southern Hemisphere marsupial biogeography. Naturwissenschaften 99(9): 715–729

  • Beck RMD (2017) The skull of Epidolops ameghinoi from the early Eocene Itaboraí fauna, southeastern Brazil, and the affinities of the extinct marsupialiform order Polydolopimorphia. J Mammal Evol 24(4):373–414

    PubMed  Google Scholar 

  • Beck RMD, Travouillon KJ, Aplin KP, Godthelp H, Archer M (2014) The osteology and systematics of the enigmatic Australian Oligo-Miocene metatherian Yalkaparidon (Yalkaparidontidae; Yalkaparidontia; ?Australidelphia; Marsupialia). J Mammal Evol 21(2):127–172

  • Beilinson E, Gasparini GM, Tomassini RL, Zárate MA, Deschamps CM, Barendregt RW, Rabassa J (2017) The Quequén Salado river basin: geology and biochronostratigraphy of the Mio-Pliocene boundary in the southern Pampean plain, Argentina. J So Am Earth Sci 76:362–374

  • Bellosi ES, Gonzalez MG (2010) Paleosols of the middle Cenozoic Sarmiento Formation, central Patagonia. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 69–105

  • Bennett MB, Taylor GC (1995) Scaling of elastic strain energy in kangaroos and the benefits of being big. Nature 378(6552): 56–59

  • Berman SL (1985) Convergent evolution in the hindlimb of bipedal rodents. J Zool Syst Evol Res 23(1):59–77

    Google Scholar 

  • Birney EC, Monjeau JA (2003) Latitudinal variation in South American marsupial biology. In: Jones M, Dickman C, Archer M (eds) Predators with Pouches. The Biology of Carnivorous Marsupials. CSIRO publising, Collingwood, pp 297–317

  • Black KH, Archer M, Hand SJ, Godthelp, H (2012) The rise of Australian marsupials: a synopsis of biostratigraphic, phylogenetic, palaeoecologic and palaeobiogeographic understanding. In: Talent JA (ed) Earth and Life: Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time. Springer, Dordrecht, pp 983–1078

  • Bonini RA (2014) Bioestratigrafía y diversidad de los mamíferos del Neógeno de San Fernando y Puerta de Corral Quemado (Catamarca, Argentina). Ph.D. dissertation, Universidad Nacional de La Plata, La Plata, Argentina, pp 366

  • Candela AM, Muñoz NA, García-Esponda CM (2017) The tarsal–metatarsal complex of caviomorph rodents: anatomy and functional–adaptive analysis. J Morphol 278(6):828–847

    PubMed  Google Scholar 

  • Candela AM, Picasso MB (2008) Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): indicators of locomotor behavior in Miocene porcupines. J Morphol 269(5):552–593

    PubMed  Google Scholar 

  • Carlini AA, Pascual R, Goin FJ (2007) A new argyrolagid marsupial from the early Miocene of Patagonia (Argentina). Neues Jahrb Geol Paläontol–Abhandl 245(3):323–330

  • Carrano MT (1997) Morphological indicators of foot posture in mammals: a statistical and biomechanical analysis. Zool J Linn Soc 121(1):77–104

    Google Scholar 

  • Carrizo LV, Tulli MJ, Abdala V (2014) An ecomorphological analysis of forelimb musculotendinous system in sigmodontine rodents (Rodentia, Cricetidae, Sigmodontinae). J Mammal 95(4):843–854

  • Chen M, Wilson GP (2015) A multivariate approach to infer locomotor modes in Mesozoic mammals. Paleobiology 41(2):280–312

    Google Scholar 

  • Cione AL, Gasparini GM, Soibelzon E, Soibelzon LH, Tonni EP (2015) The Great American Biotic Interchange: A South American Perspective. Springer, Dordrecht

  • Croft DA (2001) Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Divers Distrib 7(6):271–287

    Google Scholar 

  • Dawson TJ, Webster KN (2010) Energetic characteristics of macropodoid locomotion. In: Coulson G, Eldridge M (eds) Macropods: The Biology of Kangaroos, Wallabies, and Rat–Kangaroos. CSIRO Publishing, Collingwood, pp 99–108

  • Djawdan M (1993) Locomotor performance of bipedal and quadrupedal heteromyid rodents. Funct Ecol 7(2):195–202

    Google Scholar 

  • Dunn RE, Madden RH, Kohn MJ, Schmitz MD, Strömberg CA, Carlini AA, Ré GH, Crowley J (2013) A new chronology for middle Eocene–early Miocene South American land mammal ages. Geol Soc Am Bull 125(3–4):539–555

  • Elftman HO (1929) Functional adaptations of the pelvis in marsupials. Bull Am Mus Nat Hist 58:189–232

    Google Scholar 

  • Elissamburu A, De Santis L (2011) Forelimb proportions and fossorial adaptations in the scratch-digging rodent Ctenomys (Caviomorpha). J Mammal 92(3):683–689

  • Elissamburu A, Vizcaíno SF (2004) Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). J Zool 262(2):145–159

    Google Scholar 

  • Emerson SB (1985) Jumping and leaping. In: Hildebrand M, Bramble DM, Liem KF (eds) Functional Vertebrate Morphology. Belknap Press, Cambridge, pp 58–72

  • Erra G, Osterrieth ML, Morel EM, Fernández Honaine M (2010) Silicofitolitos de sedimentitas asociadas a “escorias y/o tierras cocidas”, de la Formación Chapadmalal (Plioceno tardío temprano), de la provincia de Buenos Aires. In: Resúmenes del X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología, p 80

  • Gallus S, Janke A, Kumar V, Nilsson MA (2015) Disentangling the relationship of the Australian marsupial orders using retrotransposon and evolutionary network analyses. Gen Biol Evol 7(4):985–992

    CAS  Google Scholar 

  • García-López DA, Babot MJ (2015) A late Miocene Argyrolagidae (Mammalia, Metatheria, Bonapartheriiformes) from northwestern Argentina. Ameghiniana 52(3):314–323

    Google Scholar 

  • Gasparini GM, Tonni EP (2016) La fauna y los ambientes en el Cuaternario de la región pampeana. In: Agnolin FL, Lio GL, Brissón Egli F, Chimento NR, Novas FE (eds) Historia evolutiva y paleobiogeográfica de los vertebrados de América del Sur. Contribuciones del MACN, 6, Buenos Aires, pp 395–492

  • Goin FJ, Abello MA (2013) Los Metatheria sudamericanos de comienzos del Neógeno (Mioceno temprano, Edad–mamífero Colhuehuapense): Microbiotheria y Polydolopimorphia. Ameghiniana 50(1):51–78

  • Goin FJ, Abello MA, Chornogubsky L (2010) Middle Tertiary marsupials from central Patagonia (early Oligocene of Gran Barranca): understanding South America’s Grande Coupure. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 69–105

  • Goin FJ, Candela AM, Abello MA, Oliveira EV (2009) Earliest South American paucituberculatans and their significance in the understanding of ‘pseudodiprotodont’ marsupial radiations. Zool J Linn Soc 155:867–884

    Google Scholar 

  • Goin FJ, Montalvo, CI, Visconti G (2000) Marsupiales (Mammalia) del Mioceno Superior de la Formación Cerro Azul (provincia de La Pampa, Argentina). Estud Geol 56:101–126

  • Goin FJ, Woodburne MO, Zimicz AN, Martin GM, Chornogubsky L (2016) A Brief History of South American Metatherians: Evolutionary Contexts and Intercontinental Dispersals. Springer, New York

    Google Scholar 

  • Goin FJ, Zimicz AN, Forasiepi AM, Chornogubsky LC, Abello MA (in press) The rise and fall of South American metatherians: contexts, adaptations, radiations, and extinctions. In: Rosenberger AL, Tejedor MF (eds) Origins and Evolution of Cenozoic South American Mammals. Springer Verlag, New York

  • Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24(5):774–786

    Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8(1):4–15

    Google Scholar 

  • Grand TI (1983) Body weight: its relationship to tissue composition, segmental distribution of mass, and motor function III. The Didelphidae of French Guyana. Aust J Zool 31(3):299–312

    Google Scholar 

  • Harvey KJ, Warburton N (2010) Forelimb musculature of kangaroos with particular emphasis on the tammar wallaby Macropus eugenii (Desmarest, 1817). Aust Mammal 32(1):1–9

    Google Scholar 

  • Hatt RT (1932) The vertebral columns of ricochetal rodents. Bull Am Mus Nat Hist 63: 599–738

  • Hildebrand M (1977) Analysis of asymmetrical gaits. J Mammal 58(2):131–156

  • Hildebrand M (1985) Walking and running. In: Hildebrand M, Bramble DM, Liem KF (eds) Functional Vertebrate Morphology. Belknap Press, Cambridge, pp 38–57

    Google Scholar 

  • Hildebrand M, Goslow GE Jr (2001) Analysis of Vertebrate Structure. John Wiley and Sons, Inc, New Jersey

  • Hoffstetter R, Villarroel C (1974) Découverte d’un marsupial Microtragulidae (Argyrolagidé) dans le Pliocène de l’Altiplano bolivien. Centre de Réchèrches de l’Académie des Sciences, Paris 278D:1947–1950

  • Hopwood PR, Butterfield RM (1976) The musculature of the proximal pelvic limb of the eastern grey kangaroo Macropus major (Shaw) Macropus giganteus (Zimm). J Anat 121(2):259–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopwood PR, Butterfield RM (1990) The locomotor apparatus of the crus and pes of the eastern gray kangaroo, Macropus giganteus. Aust J Zool 38(4):397–413

    Google Scholar 

  • Horovitz I, Sánchez–Villagra MR (2003) A morphological analysis of marsupial mammal higher–level phylogenetic relationships. Cladistics 19(3):181–212

    Google Scholar 

  • Howell AB (1932) The saltatorial rodents Dipodomys: the functional and comparative anatomy of its muscular and osseous systems. Proc Am Acad Arts Sci 67:377–536

  • Jansa SA, Barker FK, Voss RS (2014) The early diversification history of didelphid marsupials: a window into South America's “Splendid Isolation.” Evolution 68(3):684–695

  • Jouffroy FK, Medina MF, Renous S, Gasc JP (2003) Immunocytochemical characteristics of elbow, knee and ankle muscles of the five–toed jerboa (Allactaga elater). J Anat 202(4):373–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kay RF, Fleagle JG, Mitchell TR, Colbert M, Bown T, Powers DW (2008) The anatomy of Dolichocebus gaimanensis, a stem platyrrhine monkey from Argentina. J Hum Evol 54(3):323–382

    PubMed  Google Scholar 

  • Kay RF, MacFadden BJ, Madden RH, Sandeman H, Anaya F (1998) Revised age of the Salla beds, Bolivia, and its bearing on the age of the Deseadan South American Land Mammal “Age.” J Vertebr Paleontol 18(1):189–199

  • Kear BP, Lee MSY, Gerdtz WR, Flannery TF (2008) Evolution of hind limb proportions in kangaroos (Marsupialia: Macropodoidea). In: Sagris E, Dagosto M (eds) Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer Press, Dordrecht, pp 25–35

    Google Scholar 

  • Kirsch JAW, Waller PF (1979) Notes on the trapping and behavior of the Caenolestidae (Marsupialia). J Mammal 60:390–395

    Google Scholar 

  • Lorente M, Chornogubsky L, Goin FJ (2016) On the existence of non–microbiotherian Australidelphian marsupials (Diprotodontia) in the Eocene of Patagonia. Palaeontology 59(4): 533–547

    Google Scholar 

  • MacFadden BJ, Anaya F, Perez H, Naeser CW, Zeitler PK, Campbell KE Jr (1990) Late Cenozoic paleomagnetism and chronology of Andean basins of Bolivia: evidence for possible oroclinal bending. J Geol 98:541–555

    Google Scholar 

  • McGowan CP, Collins CE (2018) Why do mammals hop? Understanding the ecology, biomechanics and evolution of bipedal hopping. J Exp Biol 221(12): jeb161661

    PubMed  Google Scholar 

  • McGowan CP, Skinner J, Biewener AA (2008) Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings. J Anat 212(2):153–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacLeod N, Rose KD (1993) Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. Am J Sci 293(A): 300–355

    Google Scholar 

  • Mares MA (1985) Mammal faunas of xeric habitats and the Great American Interchange. In: Stehli F, Webb D (eds) The Great American Biotic Interchange. Springer, Boston, pp 489–520

    Google Scholar 

  • Mares MA (1993a) Desert rodents, seed consumption, and convergence. BioScience 43(6):372–379

    Google Scholar 

  • Mares MA (1993b) Heteromyids and their ecological counterparts: a pandesertic view of rodent ecology and evolution. In: Genoways HH, Brown JH (eds) Biology of Heteromyidae. Spec Publ Am Soc Mammal 10: 652–715

  • Marlow BJ (1969) A comparison of the locomotion of two desert-living Australian mammals, Antechinomys spenceri (Marsupialia: Dasyuridae) and Notomys cervinus (Rodentia: Muridae). J Zool 157(2):159–167

    Google Scholar 

  • May-Collado LJ, Kilpatrick CW, Agnarsson I (2015) Mammals from ‘down under’: a multi-gene species-level phylogeny of marsupial mammals (Mammalia, Metatheria). PeerJ 3:e805

    PubMed  PubMed Central  Google Scholar 

  • Mitchell KJ, Pratt RC, Watson LN, Gibb GC, Llamas B, Kasper M, Edson J, Hopwood B, Male D, Armstrong KN, Meyer M, Hofreiter M, Austin J, Donnellan SC, Lee MSY, Phillips MJ, Cooper A (2014) Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Mol Biol Evol 31(9):2322–2330

    CAS  PubMed  Google Scholar 

  • Moore TY, Biewener AA (2015) Outrun or outmaneuver: predator–prey interactions as a model system for integrating biomechanical studies in a broader ecological and evolutionary context. Integr Comp Biol 55(6):1188–1197

    PubMed  Google Scholar 

  • Moore TY, Cooper KL, Biewener AA, Vasudevan R (2017a) Unpredictability of escape trajectory explains predator evasion ability and microhabitat preference of desert rodents. Nature Comm 8(1):440. https://doi.org/10.1038/s41467-017-00373-2

  • Moore TY, Organ CL, Edwards SV, Biewener AA, Tabin CJ, Jenkins FA Jr, Cooper KL (2015) Multiple phylogenetically distinct events shaped the evolution of limb skeletal morphologies associated with bipedalism in the jerboas. Curr Biol 25(21):2785–2794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore TY, Rivera AM, Biewener AA (2017b) Vertical leaping mechanics of the lesser Egyptian jerboa reveal specialization for maneuverability rather than elastic energy storage. Front Zool 14(1): 32. https://doi.org/10.1186/s12983-017-0215-z

  • Muizon C de (1998) Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and paleobiologic implications. Geodiversitas 20(1):19–142

  • Nikolai JC, Bramble DM (1983) Morphological structure and function in desert heteromyid rodents. Great Basin Nat Mem 7:44–64

    Google Scholar 

  • Nilsson MA, Arnason U, Spencer PB, Janke A (2004) Marsupial relationships and a timeline for marsupial radiation in south Gondwana. Gene 340(2):189–196.

  • Ortiz PE, López DAG, Babot MJ, Pardiñas UF, Muruaga PJA, Jayat JP (2012) Exceptional late Pliocene microvertebrate diversity in northwestern Argentina reveals a marked small mammal turnover. Palaeogeogr Palaeoclimatol Palaeoecol 361:21–37

  • Osgood WH (1921) A monographic study of the American marsupial, Caenolestes. Field Mus Nat Hist Zool Ser 14:1–156

  • Pardiñas UF, Prevosti FJ, Voglino D, Cenizo M (2017) A controversial unit within the Argentine Neogene: the “Irenean” fauna. Ameghiniana 54(6):655–680

    Google Scholar 

  • Patterson BD (2007) Order Paucituberculata Ameghino, 1894. In: Gardner AL (ed) Mammals of South America, vol. 1, Marsupials, Xenarthrans, Shrews, and Bats. University of Chicago Press, Chicago and London, pp 119–127

  • Pérez ME, Arnal M, Boivin M, Vucetich MG, Candela A, Busker F, Quispe BM (2018) New caviomorph rodents from the late Oligocene of Salla, Bolivia: taxonomic, chronological, and biogeographic implications for the Deseadan faunas of South America. J Syst Palaeont https://doi.org/10.1080/14772019.2018.1471622

  • Preuschoft H, Hohn B, Scherf H, Schmidt M, Krause C, Witzel U (2010) Functional analysis of the primate shoulder. Internatl J Primatol 31(2):301–320

    Google Scholar 

  • Prevosti FJ, Forasiepi AM (2018) Evolution of South American Mammalian Predators During the Cenozoic: Palaeobiogeographic and Palaeoenvironmental Contengencies. Springer, Cham

    Google Scholar 

  • Price MV (1993) A functional–morphometric analysis of forelimbs in bipedal and quadrupedal heteromyid rodents. Biol J Linn Soc 50(4):339–360

  • Reguero MA, Candela AM, Alonso RN (2007) Biochronology and biostratigraphy of the Uquía Formation (Pliocene–early Pleistocene, NW Argentina) and its significance in the Great American Biotic Interchange. J So Am Earth Sci 23(1):1–16

  • Ruth AA, Raghanti MA, Meindl RS, Lovejoy CO (2016) Locomotor pattern fails to predict foramen magnum angle in rodents, strepsirrhine primates, and marsupials. J Hum Evol 94:45–52

    PubMed  Google Scholar 

  • Salton JA, Sargis EJ (2008) Evolutionary morphology of the Tenrecoidea (Mammalia) forelimb skeleton. In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer, Dordrecht, pp 51–71

    Google Scholar 

  • Salton JA, Sargis EJ (2009) Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton. J Morphol 270(3):367–387

    PubMed  Google Scholar 

  • Samuels JX, Van Valkenburgh B (2008) Skeletal indicators of locomotor adaptations in living and extinct rodents. J Morphol 269(11):1387–1411

    PubMed  Google Scholar 

  • Sánchez-Villagra MR (2001) The phylogenetic relationships of argyrolagid marsupials. Zool J Linn Soc 131(4):481–496

    Google Scholar 

  • Sánchez-Villagra MR (2013) Why are there fewer marsupials than placentals? On the relevance of geography and physiology to evolutionary patterns of mammalian diversity and disparity. J Mammal Evol 20(4):279–290

    Google Scholar 

  • Sánchez-Villagra MR, Kay RF (1997) A skull of Proargyrolagus, the oldest argyrolagid (late Oligocene Salla Beds, Bolivia), with brief comments concerning its paleobiology. J Vertebr Paleontol 17(4):717–724

    Google Scholar 

  • Sánchez-Villagra MR, Kay RF, Anaya-Daza F (2000) Cranial anatomy and palaeobiology of the Miocene marsupial Hondalagus altiplanensis and a phylogeny of argyrolagids. Palaeontology 43(2):287–301

    Google Scholar 

  • Sargis EJ (2002a) Functional morphology of the forelimb of tupaiids (Mammalia. Scandentia) and its phylogenetic implications. J Morphol 253:10–42

    PubMed  Google Scholar 

  • Sargis EJ (2002b) Functional morphology of the hindlimb of tupaiids (Mammalia. Scandentia) and its phylogenetic implications. J Morphol 254:149–185

    PubMed  Google Scholar 

  • Seckel L, Janis C (2008) Convergences in scapula morphology among small cursorial mammals: an osteological correlate for locomotory specialization. J Mammal Evol 15(4): 261–279

    Google Scholar 

  • Simpson GG (1970) The Argyrolagidae, extinct South American marsupials. Bull Mus Comp Zool 139:1–86

    Google Scholar 

  • Smith JM, Savage RJ (1956) Some locomotory adaptations in mammals. Zool J Linn Soc 42(288):603–622

    Google Scholar 

  • Straccia PC (1999) Anatomía funcional de Argyrolagus scagliai (Mammalia: Marsupialia: Argyrolagidae) del Plioceno en la Argentina. Doctoral dissertation, Facultad de Ciencias Naturales y Museo

  • Szalay FS (1982a) A new appraisal of marsupial phylogeny and classification. In: Archer M (ed) Carnivorous Marsupials. Royal Zoological Society of New South Wales, Sydney, pp 621–640

    Google Scholar 

  • Szalay FS (1982b) Phylogenetic relationships of the marsupials. Geobios Mem Spec 6:177–190

    Google Scholar 

  • Szalay FS (1993) Metatherian taxon phylogeny: evidence and interpretation from the cranioskeletal system. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny, Vol. 1, Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, New York, pp 216–242

    Google Scholar 

  • Szalay FS (1994) Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge University Press, Cambridge

    Google Scholar 

  • Szalay FS, Sargis EJ (2001) Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas 23(2):139–302

    Google Scholar 

  • Thompson SD, MacMillen RE, Burke EM, Taylor CR (1980) The energetic cost of bipedal hopping in small mammals. Nature 287(5779):223–224

    CAS  PubMed  Google Scholar 

  • Tomassini RL, Montalvo CI, Deschamps CM, Manera T (2013) Biostratigraphy and biochronology of the Monte Hermoso Formation (early Pliocene) at its type locality, Buenos Aires Province, Argentina. J So Am Earth Sci 48:31–42

    Google Scholar 

  • Tyndale-Biscoe H (2005) Life of Marsupials. CSIRO Publishing, Collingwood

  • Voorhies MR (1975) A new genus and species of fossil kangaroo rat and its burrow. J Mammal 56(1):160–176

    Google Scholar 

  • Warburton NM, Gregoire L, Jacques S, Flandrin C (2013) Adaptations for digging in the forelimb muscle anatomy of the southern brown bandicoot (Isoodon obesulus) and bilby (Macrotis lagotis). Aust J Zool 61:402–419

    Google Scholar 

  • Warburton NM, Harvey KJ, Prideaux GJ, O'Shea JE (2011) Functional morphology of the forelimb of living and extinct tree–kangaroos (Marsupialia: Macropodidae). J Morphol 272(10):1230–1244

  • Warburton NM, Malric A, Yakovleff M, Leonard V, Cailleau C (2015) Hind limb myology of the southern brown bandicoot (Isoodon obesulus) and greater bilby (Macrotis lagotis) (Marsupialia: Peramelemorphia). Aust J Zool 63(3):147–162

    Google Scholar 

  • Warburton NM, Yakovleff M, Malric A (2012) Anatomical adaptations of the hind limb musculature of tree-kangaroos for arboreal locomotion (Marsupialia: Macropodinae). Aust J Zool 60(4):246–258

    Google Scholar 

  • Webster KN, Dawson TJ (2004) Is the energetics of mammalian hopping locomotion advantageous in arid environments? Aust Mammal 26(2):153–160

    Google Scholar 

  • Wolff RG (1984) A new early Oligocene argyrolagid (Mammalia: Marsupialia) from Salla, Bolivia. J Vertebr Paleontol 4(1):108–113

  • Wu S, Zhang F, Edwards SV, Wu W, Ye J, Bi S, Ni X, Quan C, Meng J, Organ CL (2014) The evolution of bipedalism in jerboas (Rodentia: Dipodoidea): origin in humid and forested environments. Evolution 68(7):2108–2118

    PubMed  Google Scholar 

  • Zimicz N (2011) Patrones de desgaste y oclusión en el sistema masticatorio de los extintos Argyrolagoidea (Marsupialia, Polydolopimorphia, Bonapartheriiformes). Ameghiniana 48(3):358–379

    Google Scholar 

Download references

Acknowledgements

We especially thank M. Taglioretti (MMP) M. Reguero (División Paleontología Vertebrados, MLP) and I. Olivares (División Mastozoología, MLP) for access to specimens in their care. We thank G. Gasparini (MLP), E. Ortiz-Jaureguizar (MLP) and G. Erra (CONICET-Laboratorio de Geoquímica Orgánica, Y-TEC), who gave us valuable information on the Pliocene environments of Argentina. We thank C. García Esponda for improving the English text. We would also like to thank one anonymous reviewer and the editor John Wible, whose comments and editorial work improved this manuscript. This article is dedicated to the memory of Alejandro Dondas, curator of the Museo Municipal de Ciencias Naturales “Lorenzo Scaglia”, who kindly assisted us during our visits to the collections under his care and passed away before the conclusion of this work. This research was supported by grants from CONICET (PIP 0446 and PIP 0421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Alejandra Abello.

Electronic supplementary material

ESM 1

(PDF 133 kb)

ESM 2

(PDF 140 kb)

ESM 3

(XLSX 30 kb)

ESM 4

(TNT 421 kb)

ESM 5

(PDF 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abello, M.A., Candela, A.M. Paleobiology of Argyrolagus (Marsupialia, Argyrolagidae): an astonishing case of bipedalism among South American mammals. J Mammal Evol 27, 419–444 (2020). https://doi.org/10.1007/s10914-019-09470-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-019-09470-z

Keywords

Navigation