Skip to main content

Advertisement

Log in

Enamel Structure of Cuvieronius hyodon (Proboscidea, Gomphotheriidae) with a Discussion on Enamel Evolution in Elephantoids

  • Original Papers
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Dental material of the South American elephantoid Cuvieronius hyodon from the Late Pleistocene of the Tarija Basin, Bolivia was sampled for a comprehensive analysis of the microstructure of the enamel. To examine variability at the dentition level, enamel samples of the upper incisor, second deciduous premolar, and molars were sectioned. The incisor and cheek teeth enamel is compared to that of other proboscideans in order to reveal phylogenetically and functional informative features useful to reconstruct the evolution of elephantoid enamel. Studies of the adaptations and evolution of proboscidean enamel have focused so far on molars. Nevertheless, given the possibility of an independent evolution of the enamel at different tooth positions, the variation of the enamel throughout the dentition needs to be taken into consideration when using enamel microstructural characters to infer proboscidean diversity and phylogeny. The results obtained from this study demonstrate the generality, among elephantoids, of the basic microstructural features of Cuvieronius hyodon enamel, allowing the characterization of the Elephantoid Enamel (EE). The differentiation between incisor and molar enamel seen in elephantoids is shown to represent a primitive elephantiform trait, as it also occurs in Phiomia. The three-layered enamel of the cheek teeth appears as the sole synapomorphy of the Elephantoidea, though the character might be homoplastic within the Proboscidea. Characters of the prisms cross-section might be used, on the other hand, to define less inclusive clades within the Elephantoidea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrews CW (1906) A descriptive catalogue of the Tertiary Vertebrata of the Fayum, Egypt. London, Trustees of the British Museum

  • Bertrand P (1988) Évolution de la structure de l’émail chez les Proboscidea primitifs: Aspects phylogénétique et fonctionnel. In: Russell DE, Santoro J-P, Sigogneau-Russell D (eds) Teeth revisited: Proceedings of the 7th International Symposium on Dental Morphology. Mém Mus natl Hist Nat, Sci de la Terre (C) 53:109–124

  • Bertrand P (1989) Structure de l’émail dentaire et phylogénie chez les téthythères. PhD Dissertation, University Pierre and Marie Curie, Paris

  • Boule M, Thevenin A (1920) Mammifères fossiles de Tarija. Mission Scientifique de Créqui-Montfort et E. Sénéchal de la Grange. Paris, Soudier

  • Boyde A (1964) The structure and development of mammalian enamel. PhD Dissertation, University of London

  • Boyde A (1967) The development of enamel structure. Proc R Soc Med 60(9):1318

    Google Scholar 

  • Boyde A (1969) Electron microscopic observations relating to the nature and development of prism decussation in mammalian dental enamel. Bull Group Int Rech Scient Stomat 12:151–207

    CAS  Google Scholar 

  • Boyde A (1989) Volume 6: Teeth. In: Oksche A, Vollrath L (eds) Handbook of microscopic anatomy. Verlag, Berlin, pp 309–473

    Google Scholar 

  • Cione AL, Tonni EP (2001) Correlation of Pliocene to Holocene southern South American and European vertebrate-bearing units. Boll Soc Paleont It 40(2):167–173

    Google Scholar 

  • Coltorti M, Abbazzi L, Ferretti MP, Iacumin P, Paredes Rios F, Pellegrini M, Pieruccini P, Rustioni M, Tito G, Rook L (2007) Last Glacial mammals in South America: a new scenario from the Tarija Basin (Bolivia). Naturwissenschaften 94:288–299

    Article  PubMed  CAS  Google Scholar 

  • Dumont ER (1995) The effects of sectioning angle on measurements of enamel prism size and spacing. Arch Oral Biol 40(10):959–966

    Article  PubMed  CAS  Google Scholar 

  • Ferretti MP (in press) A review of South American gomphotheres. Bull New Mexico Mus Nat Hist, Albuquerque

  • Ferretti MP (2003a) Structure and evolution of mammoth molar enamel. Acta Palaeontol Polonica 48(3):383–396

    Google Scholar 

  • Ferretti MP (2003b) Functional aspects of the enamel evolution in Mammuthus (Proboscidea, Elephantidae). In: Reumer JWF, De Vos J, Mol D (eds) Advances in mammoth research. Proceedings of the Second International Mammoths Conference, Rotterdam, May 16–20 1999. DEINSEA 9:111–116

  • Fox DL (2000) Growth increments in Gomphotherium tusks and implications for late Miocene climate change in North America. Palaeogeogr Palaeoclim Palaeoecol 156:327–348

    Article  Google Scholar 

  • Gheerbrant E, Sudre J, Cappetta H, Bignot G (1998) Phosphatherium escuilliei du Thanétien du Bassin des Ouled Abdoun (Maroc), le plus ancien Proboscidean (Mammalia) d’Afrique. Geobios 30:247–269

    Article  Google Scholar 

  • Gheerbrant E, Sudre J, Tassy P, Amaghzaz M, Bouya B, Iarochène M (2005) Nouvelles données sur Phosphatherium escuilliei (Mammalia, Proboscidea) de l’Éocène inférieur du Maroc, apports à la phylogénie des Proboscidea et des ongulés lophodontes. Geodiversitas 27(2):239–333

    Google Scholar 

  • Grine FE, Krause DW, Fosse G, Jungers WL (1987) Analysis of individual, intraspecific and interspecific variability in quantitative parameters of caprine tooth enamel structure. Acta Odontol Scandinavica 45:1–23

    Article  CAS  Google Scholar 

  • Hoffstetter R (1950) Observaciones sobre los mastodontes de Sud America y especialmente del Ecuador. Haplomaostodon, subgen. nov. de Stegomastodon. Publicaciones Escuela Politecnica Nacional 1 (year 1950), Quito, pp 1–49

  • Hoffstetter R (1952) Les mammifères Pléistocènes de la Republique de l’Equateur. Mém Soc Géol Fr 66:1–391

    Google Scholar 

  • Hoffstetter R (1986) High Andean mammalian faunas during the Plio-Pleistocene. In: Vuilleumier F, Monasteiro M (eds) High altitude tropical biogeography. New York, Oxford University Press, pp 218–245

    Google Scholar 

  • Kamiya H (1991) Development of enamel layer observed in some fossil proboscideans. In: Suga S, Nakahara H (eds) Mechanisms and phylogeny of mineralization in Biological systems. Tokyo, Springer, pp 483–487

    Google Scholar 

  • Kamiya H, Taruno H (1988) Tooth structure in Stegolophodon, Eostegodon and Stegodon (Proboscidea, Mammalia): their phylogenetic relation. In: Russell DE, Santoro J-P, Sigogneau-Russell D (eds) Teeth revisited: Proceedings of the 7th International Symposium on Dental Morphology. Mém Mus natl Hist Nat, Sci de la Terre (C) 53:233–240

  • Kawai N (1955) Comparative anatomy of bands of Schreger. Okajimas Folia Anat Jap 27:115–131

    CAS  Google Scholar 

  • Koenigswald Wv (1988) Enamel modification in enlarged fron teeth among mammals and various possible reinforcements of the enamel. In: Russell DE, Santoro J-P, Sigogneau-Russell D (eds) Teeth revisited: Proceedings of the 7th International Symposium on Dental Morphology. Mém Mus natl Hist Nat, Sci de la Terre (C) 53:148–165

  • Koenigswald Wv (1997a) Brief survey of enamel diversity at the schmelzmuster level in Cenozoic placental mammals. In: Koenigswald Wv, Sander PM (eds) Tooth enamel microstructure. Rotterdam, Balkema, pp 137–161

    Google Scholar 

  • Koenigswald, W. v. (1997b). Evolutionary trends in the differentiation of mammalian enamel ultrastructure. In: Koenigswald Wv, Sander PM (eds) Tooth Enamel Microstructure. Rotterdam, Balkema, pp 203–235

    Google Scholar 

  • Koenigswald Wv, Clemens WA (1992) Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. Scanning Microsc 6:195–218

    PubMed  CAS  Google Scholar 

  • Koenigswald Wv, Martin T, Pfretzschner HU (1993) Phylogenetic interpretation of enamel structures in Mammalian teeth: possibilities and problems. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: placentals. New York, Springer, pp 303–314

    Google Scholar 

  • Koenigswald Wv, Pfretzschner HU (1991) Biomechanics in the enamel of Mammalian teeth. In: Schmidt-Kittler N, Vogel K (eds) Constructional morphology and evolution. Berlin, Springer, pp 113–125

    Google Scholar 

  • Koenigswald Wv, Sander PM (1997). Glossary. In: Koenigswald Wv, Sander PM (eds) Tooth enamel microstructure. Balkema, Rotterdam, pp 267–297

    Google Scholar 

  • Kozawa Y (1978) Comparative histology of proboscidean molar enamel [in Japanese]. J Stomatol Soc Jap 45(4):585–606

    CAS  Google Scholar 

  • Kozawa Y (1983) On the structure of the enamel in the Indian elephant tusk from the phylogeny of Proboscidea [in Japanese]. J Oral Biol 25:289–298

    Google Scholar 

  • Kozawa Y (1985) Evolution of proboscidean enamel structure. J Fossil Res (Supplement 2):45–50

    Google Scholar 

  • Kozawa Y, Mishima H, Sakae T (1988) Development of the elephant molar and the evolution of its enamel structure. In: Russell DE, Santoro J-P, Sigogneau-Russell D (eds) Teeth revisited: Proceedings of the 7th International Symposium on Dental Morphology. Mém Mus natl Hist Nat, Sci de la Terre (C) 53:125–131

  • Lambert WD, Shoshani J (1998) Proboscidea. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of Tertiary mammals of North America: Volume 1. Cambridge, Cambridge University Press, pp 606–621

    Google Scholar 

  • Lester KS (1989) Procerberus enamel—A missing link. Scanning Microsc 3:639–644

    PubMed  CAS  Google Scholar 

  • Lester KS, Hand SJ (1987) Chiropteran enamel structure. Scanning Microsc 1:421–436

    PubMed  CAS  Google Scholar 

  • Lester KS, Koenigswald Wv (1989) Crystallite orientation discontinuities and the evolution of mammalian enamel or, when is a prism? Scanning Microsc 3:645–663

    PubMed  CAS  Google Scholar 

  • Luckett WP (1996) Ontogenetic evidence for incisor homologies in proboscideans. In: Shoshani J, Tassy P (eds) The Proboscidea: evolution and palaeoecology of elephants and their relatives. Oxford, Oxford Univesity Press, pp 26–31

    Google Scholar 

  • MacFadden BJ, Shockey BJ (1997) Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Palaeobiol 23:77–100

    Google Scholar 

  • Maglio VJ (1973) Origin and evolution of the Elephantidae. Trans Am Phil Soc 63(3):1–144

    Article  Google Scholar 

  • Nogami Y (1981) Enamel prism of mammalian tooth. Mem Fac Sci Kyoto Univ Ser Geol Mineral 47(2):159–164

    Google Scholar 

  • Nordenskiöld E (1903) Über die Säugetierfossilien des Tarijathals, Sudamerika. I: Mastodon andium Cuvier. Kungliga Svenska Vetenskaps Akademoens Handlingar, Stockholm 37(4):1–30

  • Osborn HF (1942) Proboscidea: A monograph of the discovery, evolution, migration and extinction of the mastodons and elephants of the world. Stegodontoidea, Elephantoidea. Vol. II. New York, American Museum of Natural History

  • Pellegrini M (2005) Multi-proxy biogeochemical approach to palaeoenvironmental reconstructions: the use of stable and radiogenic isotopes in skeletal fossil remain. Plinius 31:291–296

    Google Scholar 

  • Pfretzschner HU (1988) Structural reinforcement and crack propagation in enamel. In: Russell DE, Santoro J-P, Sigogneau-Russell D (eds) Teeth revisited: Proceedings of the 7th International Symposium on Dental Morphology. Mém Mus natl Hist Nat, Sci de la Terre (C) 53:133–143

  • Pfretzschner HU (1992) Enamel microstructure and hypsodonty in large mammals. In: Smith P, Tchernov E (eds) Structure, function and evolution of teeth. London, Freund Publishing House, pp 147–162

    Google Scholar 

  • Pfretzschner HU (1994) Biomechanik der Schmelzmikrostruktur in dem Backenzähnen von Grossäugern. Paläontographica, Abt A 233(1–3):1–88

    Google Scholar 

  • Prado JL, Alberdi MT, Azanza B, Sanchez B, Frassinetti D (2005) The Pleistocene Gomphotheriidae (Proboscidea) from South America. Quat Int 126–128C:21–30

    Article  Google Scholar 

  • Radlanski RJ, Renz H, Willersinn U, Cordis CA, Duschner H (2001) Outline and arrangement of enamel rods in human deciduous and permanent enamel. 3D-reconstructions obtained from CLSM and SEM images based on serial ground sections. Eur J Oral Sci 109(6):409–14

    Article  PubMed  CAS  Google Scholar 

  • Raubenheimer EJ, Van Heerden WHP, Van Niekerk PJ, De Vos V, Turner MJ (1995) Morphology of the deciduous tusk (tush) of the African elephant Loxodonta africana. Arch Oral Biol 40(6):571–576

    Article  PubMed  CAS  Google Scholar 

  • Remy JA (1976) Présence de Deinotherium sp., Kaup (Proboscidea, Mammalia) dans la fauna Miocéne de Beni Mellal (Maroc). Géol mediterranéenne 3:109–114

    Google Scholar 

  • Rensberger JM (2000) Pathways to functional differentiation in mammalian enamel. In: Teaford MF, Smith MM, Ferguson MWJ (eds) Development, function and evolution of teeth. Cambridge, Cambridge University Press, pp 252–268

    Google Scholar 

  • Rensberger JM, Koenigswald Wv (1980) Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Palaeobiol 6:477–495

    Google Scholar 

  • Saether OL (1979) Underlying synapomorphies and anagenic analysis. Zool Scripta 8:305–312

    Article  Google Scholar 

  • Sanchez Chillon B, Prado JL, Alberdi MT (2004) Isotopic evidences on the paleodiet of Pleistocene South American gomphotheres (Gomphotheriidae, Proboscidea). Palaeobiol 30 (1):146–161

    Article  Google Scholar 

  • Shellis RP (1984) Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure. Arch Oral Biol 29:697–705

    Article  PubMed  CAS  Google Scholar 

  • Shoshani J (1996) Para- or monophyly of the gomphotheres and their position within Proboscidea.. In: Shoshani J, Tassy P (eds) The Proboscidea: evolution and palaeoecology of elephants and their relatives. Oxford, Oxford University Press, pp 149–177

    Google Scholar 

  • Shoshani J (1998) Understanding proboscidean evolution: a formidable task. Tree 13:480–487

    Google Scholar 

  • Tabuce R, Delmer C, Gheerbrant E (2007) Evolution of the tooth enamel microstructure in the earliest proboscideans (Mammalia). Zool J Linn Soc 149:611–628

    Article  Google Scholar 

  • Takai F, Mizuno T, Iwasaki Y, Tanaka K, Yoshida A (1982) Tarija mammal-bearing Formation in Bolivia. Reports Res Inst Evol Bio Tokyo 3:1–72

    Google Scholar 

  • Tassy P (1987) A hypothesis on the homology of proboscidean tusks based on paleontological data. Am Mus Novitates 2895:1–18

    Google Scholar 

  • Tassy P (1988) The classification of Proboscidea: how many cladistic classifications? Cladistics 4:43–57

    Article  Google Scholar 

  • Tassy P (1994) Origin and diversification of the Elephantiformes (Mammalia, Proboscidea). Verhandl Naturwissensch Ver Hamburg, NF 34:73–94

    Google Scholar 

  • Tassy P (1996a). Dental homologies and nomenclature in the Proboscidea. In: Shoshani J, Tassy P (eds) The Proboscidea: evolution and palaeoecology of elephants and their relatives. Oxford, Oxford University Press, pp 21–25

    Google Scholar 

  • Tassy P (1996b) Who is who among the Proboscidea. In: Shoshani J, Tassy P (eds) The Proboscidea: evolution and palaeoecology of elephants and their relatives. Oxford, Oxford University Press, pp 39–48

    Google Scholar 

  • Wood CB, Rougier GW (2005) Updating and recoding enamel microstructure in Mesozoic mammals: in search of discrete characters for phylogenetic reconstruction. J Mammal Evol 12(3–4):433–460

    Article  Google Scholar 

  • Wood CB, Stern DN (1997) The earliest prisms in mammalian and reptilian enamel. In: Koenigswald Wv, Sander PM (eds) Tooth enamel microstructure. Rotterdam, Balkema, pp 63–83

    Google Scholar 

Download references

Acknowledgments

I thank Freddy Rios Paredes (Tarija), Bernardino Mamani Quispe (La Paz), Pascal Tassy (Paris), and Lars Werdelin (Stockholm) for sampling and access to material in their care. I am grateful to Wighart von Koenigswald for providing additional elephantoid enamel samples and for discussion on incisor enamel. I thank the AMNH for permission to reproduce Fig. 7. I also thank Adrian Lister and Rodolphe Tabuce for critical reading of an early draft of the paper and for providing comments and insights. Cyrille Delmer, Youshige Kozawa, Lorenzo Rook, and Keiichi Takahashi are acknowledged for help with literature and discussion. I thank Paolo Pierattini, Maurizio Ulivi, and Fabio Cozzini (Firenze) for technical assistance, and the two anonymous reviewers for their valuable comments. This study is framed within a wider research project on the Pleistocene and Holocene evolutionary history of South American mammal assemblages, developed at the University of Firenze (Lorenzo Rook coordinator) and supported by the Italian Ministry of University and Research (Cofin grants 2000 and 2002), the Italian Ministry of Foreigner Affairs (DGPCC grants 2002 and 2003) and the University of Firenze (‘‘Fondi di Ateno’’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco P. Ferretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferretti, M.P. Enamel Structure of Cuvieronius hyodon (Proboscidea, Gomphotheriidae) with a Discussion on Enamel Evolution in Elephantoids. J Mammal Evol 15, 37–58 (2008). https://doi.org/10.1007/s10914-007-9057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-007-9057-3

Keywords

Navigation