Skip to main content

Advertisement

Log in

A Transgenic MMTV-Flippase Mouse Line for Molecular Engineering in Mammary Gland and Breast Cancer Mouse Models

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Genetically engineered mouse models have become an indispensable tool for breast cancer research. Combination of multiple site-specific recombination systems such as Cre/loxP and Flippase (Flp)/Frt allows for engineering of sophisticated, multi-layered conditional mouse models. Here, we report the generation and characterization of a novel transgenic mouse line expressing a mouse codon-optimized Flp under the control of the mouse mammary tumor virus (MMTV) promoter. These mice show robust Flp-mediated recombination in luminal mammary gland and breast cancer cells but no Flp activity in non-mammary tissues, with the exception of limited activity in salivary glands. These mice provide a unique tool for studying mammary gland biology and carcinogenesis in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MMTV:

Mouse mammary tumor virus

Flp:

Flippase

Flpo:

mouse codon usage-optimized Flp

CK:

cytokeratin

References

  1. Borowsky AD. Choosing a mouse model: experimental biology in context--the utility and limitations of mouse models of breast cancer. Cold Spring Harb Perspect Biol. 2011;3(9):a009670. https://doi.org/10.1101/cshperspect.a009670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Van Keymeulen A, Lee MY, Ousset M, Brohee S, Rorive S, Giraddi RR, et al. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature. 2015;525(7567):119–23. https://doi.org/10.1038/nature14665.

    Article  CAS  PubMed  Google Scholar 

  3. Koren S, Reavie L, Couto JP, De Silva D, Stadler MB, Roloff T, et al. PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature. 2015;525(7567):114–8. https://doi.org/10.1038/nature14669.

    Article  CAS  PubMed  Google Scholar 

  4. Blaas L, Pucci F, Messal HA, Andersson AB, Josue Ruiz E, Gerling M, et al. Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours. Nat Cell Biol. 2016;18(12):1346–56. https://doi.org/10.1038/ncb3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zomer A, Ellenbroek SI, Ritsma L, Beerling E, Vrisekoop N, Van Rheenen J. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells. 2013;31(3):602–6. https://doi.org/10.1002/stem.1296.

    Article  CAS  PubMed  Google Scholar 

  6. Beerling E, Seinstra D, de Wit E, Kester L, van der Velden D, Maynard C, et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 2016;14(10):2281–8. https://doi.org/10.1016/j.celrep.2016.02.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A. 2016;113(7):E854–63. https://doi.org/10.1073/pnas.1508541113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527(7579):472–6. https://doi.org/10.1038/nature15748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Branda CS, Dymecki SM. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell. 2004;6(1):7–28.

    Article  CAS  PubMed  Google Scholar 

  10. Olorunniji FJ, Rosser SJ, Stark WM. Site-specific recombinases: molecular machines for the genetic revolution. Biochem J. 2016;473(6):673–84. https://doi.org/10.1042/BJ20151112.

    Article  CAS  PubMed  Google Scholar 

  11. Dymecki SM, Ray RS, Kim JC. Mapping cell fate and function using recombinase-based intersectional strategies. Methods Enzymol. 2010;477:183–213. https://doi.org/10.1016/S0076-6879(10)77011-7.

    Article  CAS  PubMed  Google Scholar 

  12. Schonhuber N, Seidler B, Schuck K, Veltkamp C, Schachtler C, Zukowska M, et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med. 2014;20(11):1340–7. https://doi.org/10.1038/nm.3646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shai A, Dankort D, Juan J, Green S, McMahon M. TP53 silencing bypasses growth arrest of BRAFV600E-induced lung tumor cells in a two-switch model of lung tumorigenesis. Cancer Res. 2015;75(15):3167–80. https://doi.org/10.1158/0008-5472.CAN-14-3701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Young NP, Crowley D, Jacks T. Uncoupling cancer mutations reveals critical timing of p53 loss in sarcomagenesis. Cancer Res. 2011;71(11):4040–7. https://doi.org/10.1158/0008-5472.CAN-10-4563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moding EJ, Lee CL, Castle KD, Oh P, Mao L, Zha S, et al. Atm deletion with dual recombinase technology preferentially radiosensitizes tumor endothelium. J Clin Invest. 2014;124(8):3325–38. https://doi.org/10.1172/JCI73932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He L, Li Y, Li Y, Pu W, Huang X, Tian X, et al. Enhancing the precision of genetic lineage tracing using dual recombinases. Nat Med. 2017;23(12):1488–98. https://doi.org/10.1038/nm.4437.

    Article  CAS  PubMed  Google Scholar 

  17. Bang SJ, Jensen P, Dymecki SM, Commons KG. Projections and interconnections of genetically defined serotonin neurons in mice. Eur J Neurosci. 2012;35(1):85–96. https://doi.org/10.1111/j.1460-9568.2011.07936.x.

    Article  PubMed  Google Scholar 

  18. Engleka KA, Manderfield LJ, Brust RD, Li L, Cohen A, Dymecki SM, et al. Islet1 derivatives in the heart are of both neural crest and second heart field origin. Circ Res. 2012;110(7):922–6. https://doi.org/10.1161/CIRCRESAHA.112.266510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992;12(3):954–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee CL, Moding EJ, Huang X, Li Y, Woodlief LZ, Rodrigues RC, et al. Generation of primary tumors with Flp recombinase in FRT-flanked p53 mice. Dis Model Mech. 2012;5(3):397–402. https://doi.org/10.1242/dmm.009084.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank P. Lorentz for support with microscopy and H. Antoniadis and U. Schmieder for technical support. We are grateful to S. Dymecki and N. Hynes for providing mice and P. Soriano and K. Alitalo for plasmids. R.B. was supported by a MD-PhD fellowship of the Swiss National Science Foundation and Swiss Cancer League. The work was supported by the Swiss National Science Foundation and the Swiss Cancer League.

Author information

Authors and Affiliations

Authors

Contributions

F.L. designed and performed the experiments, analysed the data and wrote the manuscript. R.B. conceived the idea and designed some of the experiments and analysed the data. A.V. performed some of the experiments. H.O. and P.P. performed the pronuclei microinjections. G.C. supervised the project, designed the experiments, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Gerhard Christofori.

Ethics declarations

Conflicts of Interest

The authors declare no financial and non-financial competing interests.

Ethical Approval

All animal experiments were carried out in accordance with the guidelines of the Swiss Federal Veterinary Office (SFVO) and the Cantonal Veterinary Office of Basel-Stadt (license numbers 1878, 1023G1).

Informed Consent

No individual person’s data has been used in this project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lüönd, F., Bill, R., Vettiger, A. et al. A Transgenic MMTV-Flippase Mouse Line for Molecular Engineering in Mammary Gland and Breast Cancer Mouse Models. J Mammary Gland Biol Neoplasia 24, 39–45 (2019). https://doi.org/10.1007/s10911-018-9412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-018-9412-4

Keywords

Navigation