Skip to main content
Log in

Efficient approximation of solution derivatives for system of singularly perturbed time-dependent convection-diffusion PDEs on Shishkin mesh

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This article deals with a coupled system of singularly perturbed convection-diffusion parabolic partial differential equations (PDEs) possessing overlapping boundary layers. As the thickness of the layer shrinks for small diffusion parameter, efficient capturing of the solution and the diffusive flux (i.e., scaled first-order spatial derivative of the solution) leads to a difficult task. It is well-known that the classical numerical techniques have deficiencies in estimating the solution and the diffusive flux on equidistant mesh unless the mesh-size is adequately large. We aim to generate an efficient numerical approximation to the coupled system of PDEs by employing the implicit-Euler method in time and a classical finite difference scheme in space on a layer-adapted Shishkin mesh. Firstly, we discuss about parameter-uniform convergence of the numerical solution in \(C^0\)-norm followed by the error analysis for the scaled discrete space derivative and the discrete time derivative. Subsequently, the parameter-uniform error bound is established in weighted \(C^1\)-norm for global approximation to the solution and the space-time solution derivatives. The theoretical findings are verified by generating the numerical results for two test examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. L. Uys, J.S. Hofmeyr, J. Rohwer, Coupling kinetic models and advection-diffusion equations. 1. framework development and application to sucrose translocation and metabolism in sugarcane. In Silico Plants 3, diab013 (2021)

    Article  CAS  Google Scholar 

  2. C.D. Shackelford, D.E. Daniel, Diffusion in saturated soil. i: Background. J. Geotech. Eng. 117(3), 467–484 (1991)

    Article  Google Scholar 

  3. M. Manassero, C.D. Shackelford, The role of diffusion in contaminant migration through soil barriers. Riv. Ital. Geotec. 28(1), 5–31 (1994)

    Google Scholar 

  4. G.I. Shishkin, L.P. Shishkina, Difference Methods for Singular Perturbation Problems (Chapman & Hall/CRC Press, Boca Raton, FL, 2009)

    Google Scholar 

  5. E.P. Doolan, J.J.H. Miller, W.H.A. Schildres, Uniform Numerical Methods for Problems with Initial and Boundary Layers (Boole Press, Dublin, 1980)

    Google Scholar 

  6. K. Mukherjee, S. Natesan, Parameter-uniform hybrid numerical scheme for time-dependent convection-dominated initial-boundary-value problems. Computing 84(3–4), 209–230 (2009)

    Article  Google Scholar 

  7. N.S. Yadav, K. Mukherjee, Efficient parameter-robust numerical methods for singularly perturbed semilinear parabolic PDEs of convection-diffusion type. Numer. Algorithms (2023). https://doi.org/10.1007/s11075-023-01670-2

    Article  Google Scholar 

  8. N. Madden, M. Stynes, A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction-diffusion problems. IMA J. Numer. Anal. 23, 627–644 (2003)

    Article  Google Scholar 

  9. S. Singh, D. Kumar, H. Ramos, An efficient parameter uniform spline-based technique for singularly perturbed weakly coupled reaction-diffusion systems. J. Appl. Anal. Comput. 13(4), 2203–2228 (2023)

    Google Scholar 

  10. K. Aarthika, V. Shanthi, H. Ramos, A finite-difference scheme for a coupled system of singularly perturbed time-dependent reaction-diffusion equations with discontinuous source terms. Int. J. Comput. Math. 98, 120–135 (2020)

    Article  Google Scholar 

  11. T. Linß, Analysis of an upwind finite-difference scheme for a system of coupled singularly perturbed convection-diffusion equations. Computing 79, 23–32 (2007)

    Article  Google Scholar 

  12. Z. Cen, Parameter-uniform finite difference scheme for a system of coupled singularly perturbed convection-diffusion equations. Int. J. Comput. Math. 82(2), 177–192 (2005)

    Article  Google Scholar 

  13. R. Christy, A. Tamilselvan, N. Geetha, An analysis of overlapping schwarz method for a weakly coupled system of singularly perturbed convection-diffusion equations. Int. J. Numer. Methods Fluids 92(1), 528–544 (2020)

    Article  Google Scholar 

  14. L. Liu, G. Long, Y. Zhang, Parameter uniform numerical method for a system of two coupled singularly perturbed parabolic convection-diffusion equations. Adv. Differ. Equ. 1, 450 (2018)

    Article  Google Scholar 

  15. K. Aarthika, V. Shanthi, H. Ramos, A non-uniform difference scheme for solving singularly perturbed 1D-parabolic reaction-convection-diffusion systems with two small parameters and discontinuous source terms. J. Math. Chem. 58, 663–685 (2020)

    Article  CAS  Google Scholar 

  16. M.K. Singh, S. Natesan, Numerical analysis of singularly perturbed system of parabolic convection-diffusion problem with regular boundary layers. Diff. Equ. Dyn. Syst. 30, 695–717 (2022)

    Article  Google Scholar 

  17. S. Bose, K. Mukherjee, Numerical approximation of system of singularly perturbed convection-diffusion problems on different layer-adapted meshes, in Modeling, Simulation and Optimization. ed. by B. Das, R. Patgiri, S. Bandyopadhyay, V.E. Balas (Springer, Singapore, 2022), pp.523–535

    Chapter  Google Scholar 

  18. O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural‘ceva, Linear and Quasi-linear Equations of Parabolic Type, vol. 23 (American Mathematical Society, Providence, 1968)

    Book  Google Scholar 

  19. J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems (World Scientific, Singapore, 1996)

    Book  Google Scholar 

  20. P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Robust Computational Techniques for Boundary Layers (Chapman & Hall/CRC Press, Boca Raton, 2000)

    Book  Google Scholar 

  21. N. Kopteva, M. Stynes, Approximation of derivatives in a convection-diffusion two-point boundary value problem. Appl. Numer. Math. 39, 47–60 (2001)

    Article  Google Scholar 

  22. R.M. Priyadharshini, N. Ramanujam, Approximation of derivative to a singularly perturbed second-order ordinary differential equation with discontinuous convection coefficient using hybrid difference scheme. Int. J. Comput. Math. 86(8), 1355–1365 (2009)

    Article  Google Scholar 

  23. R.M. Priyadharshini, N. Ramanujam, V. Shanthi, Approximation of derivative in a system of singularly perturbed convection-diffusion equations. J. Appl. Math. Comput. 29(1–2), 137–151 (2009)

    Article  Google Scholar 

  24. R.M. Priyadharshini, N. Ramanujam, Uniformly-convergent numerical methods for a system of coupled singularly perturbed convection-diffusion equations with mixed type boundary conditions. Math. Model. Anal. 18(5), 577–598 (2013)

    Article  Google Scholar 

  25. S. Bose, K. Mukherjee, A fast uniformly accurate global numerical approximation to solution and scaled derivative of system of singularly perturbed problems with multiple diffusion parameters on generalized adaptive mesh. Comput. Appl. Math. 42(180), 1–52 (2023)

    Google Scholar 

  26. J.L. Gracia, E. O’Riordan, Numerical approximation of solution derivatives of singularly perturbed parabolic problems of convection-diffusion type. Math. Comput. 85(298), 581–599 (2016)

    Article  Google Scholar 

  27. M.K. Singh, S. Natesan, Richardson extrapolation technique for singularly perturbed system of parabolic partial differential equations with exponential boundary layers. Appl. Math. Comput. 333, 254–275 (2018)

    Google Scholar 

  28. M. Stynes, E. O’Riordan, A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem. J. Math. Anal. Appl. 214(1), 36–54 (1997)

    Article  Google Scholar 

  29. R.B. Kellogg, A. Tsan, Analysis of some differences approximations for a singular perturbation problem without turning point. Math. Comput. 32(144), 1025–1039 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the anonymous reviewer for the valuable suggestions. The first author wishes to acknowledge Council of Scientific and Industrial Research, India, for the research grant 09/1187(0004)/2019-EMR-I during his Ph.D.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have equally contributed to the manuscript.

Corresponding author

Correspondence to Kaushik Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Lemma 4.3

Proof of Lemma 4.3

Proof

We derive bound of the truncation error by considering two subregions for \(x_i\in (1-{\uptheta }_{\varepsilon _1}^{1}, 1]\) and \(x_i\in (1-{\uptheta }_{\varepsilon _2}^{1},1-{\uptheta }_{\varepsilon _1}^{1}]\).

  1. (i)

    Let \(x_i \in (1-{\uptheta }_{\varepsilon _1}^{1}, 1]\). Then, for \(\displaystyle 3N/4< i < N\), by using Lemma 2.2 and the method of [29], Lemma 3.3], and since \(\frac{\varepsilon _1}{\varepsilon _2} <1, \text {sinh}\xi \le \xi ,\) we obtain that

    $$\begin{aligned}&\Big |\Big (\delta _{t}^{-}+\texttt{L}_{x,\varepsilon _1}^{N, \Delta t}\Big )(\vec {Q}-\vec {q})(x_i, t_m)\Big |\nonumber \\&\quad \le \text {C} \Bigg [\Delta t+\varepsilon _1^{-1}\mathfrak {B}_{\varepsilon _1}(1-x_{i})(\upbeta \texttt{H}^2/\varepsilon _1)+ \varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(1-x_{i})(\upbeta \texttt{H}^2/\varepsilon _2)\Bigg ]\nonumber \\&\quad \le \text {C} \Bigg [\Delta t+(\varepsilon _1^{-1}\mathfrak {B}_{\varepsilon _1}(1-x_{i})+\varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(1-x_{i}))N^{-1}\ln N\Bigg ], \end{aligned}$$

    and similar bound can be obtained for \(\Big (\delta _{t}^{-}+\texttt{L}_{x,\varepsilon _2}^{N, \Delta t}\Big )(\vec {Q}-\vec {q})(x_i, t_m)\).

  2. (ii)

    Let \(x_i \in (1-{\uptheta }_{\varepsilon _2}^1, 1-{\uptheta }_{\varepsilon _1}^1]\). Since, \(\varepsilon _1^{-2}\exp (-\upbeta (1-\xi )/\varepsilon _1) \le \varepsilon _2^{-2}\exp (-\upbeta (1-\xi )/\varepsilon _2)\), for \(1-\xi > 2\varepsilon _1/\upbeta \), we deduce for \(\displaystyle N/2+\sum _{j=1}^{\Bbbk -1}N_{j} < i \le N/2 + \sum _{j=1}^{\Bbbk }N_{j},\) that

    $$\begin{aligned} \Big |\Big (\delta _{t}^{-}+\texttt{L}_{x,\varepsilon _1}^{N, \Delta t}\Big )(\vec {Q}-\vec {q})(x_i, t_m)\Big |&\le \text {C} \Big [\Delta t+\varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(1-x_{i})(\upbeta \texttt{H}^1/\varepsilon _2)\Big ]\nonumber \\&\le \text {C}\Big [\Delta t+ \varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(1-x_i)N^{-1}\ln N\Big ], \end{aligned}$$

    where \(\upbeta \texttt{H}^1 \le \text {C}\varepsilon _2N^{-1}\ln N\); and similarly, one can derive the bound for \(\Big (\delta _{t}^{-}+\texttt{L}_{x,\varepsilon _2}^{N, \Delta t}\Big )(\vec {Q}-\vec {q})(x_i, t_m)\).

Now, we consider the following discrete functions:

$$\begin{aligned} \vec {\psi }^\pm (x_i, t_m)=-\vec {\lambda }(x_i,t_m)\pm (\vec {Q}-\vec {q})(x_i,t_m),\quad \text {for } N/2 \le i \le N, \end{aligned}$$

where \(\vec {\lambda }=(\lambda _1, \lambda _2)^{T}\) is defined as,

$$\begin{aligned}&\vec {\lambda }(x_i, t_m)\\&\quad = {\left\{ \begin{array}{ll} \displaystyle \displaystyle \Bigg [\vec {\text {C}}(\Delta t+N^{-1}(1+x_{i}))+\text {C}\Uptheta _{2,N}^{-1}\vec {\Uptheta }_{2,i}N^{-1}\ln N\Bigg ], \qquad \text {for}~\displaystyle N/2 \le i \le 3N/4,\\ \displaystyle \Bigg [\vec {\text {C}}(\Delta t+N^{-1}(1+x_{i}))+ \text {C}\Big (\Uptheta _{1,N}^{-1}\vec {\Uptheta }_{1,i}+\Uptheta _{2,N}^{-1}\vec {\Uptheta }_{2,i}\Big ) N^{-1}\ln N \Bigg ],\qquad \\ \quad \text {for} ~\displaystyle 3N/4 < i \le N, \end{array}\right. } \end{aligned}$$

where \(\vec {\Uptheta }_{2, i}=(\Uptheta _{2, i}, \Uptheta _{2, i})^{T}, \vec {\Uptheta }_{1, i}=(\Uptheta _{1, i}, -\Uptheta _{1, i})^{T}\). Since, \(\texttt{H}^1 =O(\varepsilon _2)\), \(\texttt{H}^2=O(\varepsilon _1)\), and \(\varepsilon _1 < \varepsilon _2\), from Lemma 3.2, we obtain that

$$\begin{aligned}&\texttt{L}_{x,\varepsilon _1}^{N,\Delta t}\vec {\Uptheta }_{2,i} \ge {\text {C}\varepsilon _2^{-1}\Uptheta _{2,i}},\qquad \texttt{L}_{x,\varepsilon _2}^{N,\Delta t}\vec {\Uptheta }_{2,i} \ge \text {C}\varepsilon _2^{-1}\Uptheta _{2,i},\quad N/2< i \le N,\nonumber \\&\texttt{L}_{x,\varepsilon _1}^{N,\Delta t}\vec {\Uptheta }_{1,i} \ge {\text {C}\varepsilon _1^{-1}\Uptheta _{1,i}},\qquad \texttt{L}_{x,\varepsilon _2}^{N,\Delta t}\vec {\Uptheta }_{1,i} \ge \text {C}\varepsilon _1^{-1}\Uptheta _{1,i}, \quad 3N/4 < i \le N. \end{aligned}$$
(A.1)

Hence, for \(N/2< i < N\), using (A.1), since \(\mathfrak {B}_{\varepsilon _r}(1-x_i)=e^{-\upbeta (1-x_i)/\varepsilon _r} \le \displaystyle (\Uptheta _{r,i}/\Uptheta _{r,N}),~~ r=1, 2,\) we have

$$\begin{aligned} \Big (\delta _{t}^{-}+\texttt{L}_{x,\vec {\varepsilon }}^{N, \Delta t}\Big )\vec {\lambda }(x_i, t_m) \ge \Big |\Big (\delta _{t}^{-}+\texttt{L}_{x,\vec {\varepsilon }}^{N, \Delta t}\Big )(\vec {Q}-\vec {q})(x_i, t_m)\Big |, \quad \text {for N/2< i < N}. \end{aligned}$$
(A.2)

Now, using Lemma 4.2, we get

$$\begin{aligned} \vec {\lambda }(x_{N/2}, t_m)&=\Bigg [\vec {\text {C}}\Big (\Delta t+N^{-1}(1+x_{N/2})\Big )+\text {C} \Uptheta _{2,N}^{-1} \vec {\Uptheta }_{2, N/2} N^{-1}\ln N\Bigg ],\nonumber \\&\ge \vec {\text {C}}N^{-1} \ge \vec {\text {C}}N^{-2} \ge |(\vec {Q}-\vec {q})(1-{\uptheta }_{\varepsilon _2}^1, t_m)|. \end{aligned}$$
(A.3)

Also, \( \vec {\lambda }(x_N, t_m)=\displaystyle \Bigg [\vec {\text {C}}\Big (\Delta t+N^{-1}(1+x_{i})\Big )+ \text {C}\Big ( \Uptheta _{1,N}^{-1}\vec {\Uptheta }_{1,N}+\Uptheta _{2,N}^{-1}\vec {\Uptheta }_{2,N}\Big ) N^{-1}\ln N\Bigg ]\ge \vec {0}.\)

Thus,

$$\begin{aligned} \vec {\lambda }(x_N, t_m)\ge \vec {0} =|(\vec {Q}-\vec {q})(1, t_m)|. \end{aligned}$$
(A.4)

Afterwards, we consider \(\vec {\lambda }(x_i,0)\), for \(N/2\le i\le N\). Clearly, \(\lambda _1(x_i, 0) \ge 0,\quad \) for \(N/2\le i\le N\). Next, for \(\displaystyle N/2 < i \le 3N/4,\) it is obvious that \(\lambda _2(x_i, 0) \ge 0\). For \(\displaystyle 3N/4 < i \le N,\) we have

$$\begin{aligned} \displaystyle \lambda _2(x_i, 0)= & {} \text {C}\Bigg [\Delta t+N^{-1}(1+x_{i})\\{} & {} \quad \quad + \text {C} \Big (-(\Uptheta _{1,i}/\Uptheta _{1,N})+(\Uptheta _{2, i}/\Uptheta _{2, N})\Big ) N^{-1}\ln N \Bigg ] \ge 0. \end{aligned}$$

Since \(0< \Big ((\Uptheta _{2, i}/\Uptheta _{2, N})-(\Uptheta _{1,i}/\Uptheta _{1,N})\Big )<(\Uptheta _{2, i}/\Uptheta _{2, N}) <1.\) Thus, \(\lambda _2(x_i, 0) \ge 0, ~\text {for}~N/2 \le i \le N.\) Therefore, we have

$$\begin{aligned} \vec {\lambda }(x_i, 0) \ge \vec {0} =|(\vec {Q}-\vec {q})(x_i, 0)|, \end{aligned}$$
(A.5)

Thus, from (A.2)-(A.5), and by using discrete minimum principle (Lemma 3.1) to \(\vec {\psi }^\pm \) over the domain, \(\overline{\mathscr {D}}^{N, \Delta t}\cap ([1-{\uptheta }_{\varepsilon _2}^1, 1]\times [0, T]),\) we have

$$\begin{aligned} |(\vec {Q}-\vec {q})(x_i, t_m)| \le \vec {\lambda }(x_i,t_m),\quad (x_i, t_m)\in \overline{\mathscr {D}}_2^{N, \Delta t}\cap ([1-{\uptheta }_{\varepsilon _2}^1, 1]\times [0, T]). \end{aligned}$$

Afterwards, we establish the required estimate for \((\vec {Q}-\vec {q})(x_i, t_m)\) as stated in Lemma 4.3 by deriving the bound for \(\vec {\lambda }(x_i, t_m)\).

Let us consider two subregions for \(x_i\in (1-{\uptheta }_{\varepsilon _1}^{1}, 1]\) and \(x_i\in (1-{\uptheta }_{\varepsilon _2}^{1},1-{\uptheta }_{\varepsilon _1}^{1}]\).

  1. (i)

    Let \(x_i \in (1-{\uptheta }_{\varepsilon _1}^{1}, 1]\). For \(\displaystyle 3N/4 < i \le N,\) we have

    $$\begin{aligned}&\displaystyle \lambda _1(x_i, t_m)\le \text {C}\Big [\Delta t+N^{-1}+ \Big ((\Uptheta _{1,i}/\Uptheta _{1,N})+(\Uptheta _{2, i}/\Uptheta _{2, N}) \Big )N^{-1} \ln N\Big ]\\&\quad \le \text {C}\Big [\Delta t +N^{-1}+N^{-1}\ln N\Big ], \\&\displaystyle \lambda _2(x_i, t_m) \le \text {C}\Big [\Delta t+N^{-1}+ \Big ((\Uptheta _{2, i}/\Uptheta _{2, N})-(\Uptheta _{1, i}/\Uptheta _{1, N})\Big )N^{-1}\ln N \Big ]\\&\quad \le \text {C}\Big [\Delta t + N^{-1}+N^{-1}\ln N\Big ],\! \quad \text {since} \!\quad 0< \Big ((\Uptheta _{2, i}/\Uptheta _{2, N})-(\Uptheta _{1, i}/\Uptheta _{1, N})\Big ) <1. \end{aligned}$$
  2. (ii)

    Let \(x_i \in (1-{\uptheta }_{\varepsilon _2}^1, 1-{\uptheta }_{\varepsilon _1}^1]\). For \(\displaystyle N/2 < i \le 3N/4\), we have

    $$\begin{aligned} \displaystyle \lambda _1(x_i, t_m) \le&\text {C}\Big [\Delta t+N^{-1}+ (\Uptheta _{2, i}/\Uptheta _{2, N}) N^{-1}\ln N\Big ] \\ \le&\text {C}\Big [\Delta t+N^{-1}+N^{-1}\ln N\Big ],\quad \end{aligned}$$

    since \((\Uptheta _{2, i}/\Uptheta _{2, N}) < 1\). Similarly, \( \displaystyle \lambda _2(x_i, t_m) \le \text {C}\Big [\Delta t+N^{-1}+N^{-1}\ln N\Big ].\)

    Thus, we have

    $$\begin{aligned} \vec {\lambda }(x_i, t_m)\le {\left\{ \begin{array}{ll} \displaystyle \vec {\text {C}}\Big [\Delta t+\text {max}\{N^{-1},N^{-1}\ln N\}\Big ], \quad \text {for}~x_i \in (1-{\uptheta }_{\varepsilon _2}^1, 1-{\uptheta }_{\varepsilon _1}^1], \\ \vec {\text {C}}\Big [\Delta t +N^{-1}+ N^{-1}\ln N \Big ], \quad \text {for}~x_i \in (1-{\uptheta }_{\varepsilon _1}^{1}, 1]. \end{array}\right. } \end{aligned}$$

Hence, the proof is over. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, S., Mukherjee, K. Efficient approximation of solution derivatives for system of singularly perturbed time-dependent convection-diffusion PDEs on Shishkin mesh. J Math Chem 62, 1134–1174 (2024). https://doi.org/10.1007/s10910-024-01587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-024-01587-8

Keywords

Mathematics Subject Classification

Navigation