Skip to main content
Log in

An exceedingly effective and inexpensive two-step, fourteenth-order phase-fitting method for solving quantum chemical issues

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In order to get rid of the phase-lag and its first, second, third, fourth, and fifth derivatives, a phase-fitting method might be applied. The new strategy, called the economical method, maximizes algebraic order (AOR) while minimizing function evaluations (FEvs). Equation PF5DPFN142SPS describes the unique method. An infinitely periodic P-Stable technique is suggested. The proposed method is applicable to numerous problems with periodic and/or oscillatory solutions. In quantum chemistry, this novel approach was used to address the challenging problem of Schrödinger-type coupled differential equations. It is an economic algorithm because each step of the new method only costs 5FEvs to carry out. This helps us to improve our existing condition significantly by achieving an AOR of 14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)

    ADS  MathSciNet  Google Scholar 

  2. C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)

    Google Scholar 

  3. F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)

    Google Scholar 

  4. A.R. Leach, Molecular Modelling—Principles and Applications (Pearson, Essex, 2001)

    Google Scholar 

  5. P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford University Press, Oxford, 2011)

    Google Scholar 

  6. K. Mu, T.E. Simos, A Runge-Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)

    MathSciNet  CAS  Google Scholar 

  7. T.E. Simos, Exponentially fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)

    Google Scholar 

  8. V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conf. Proc. 738, 480004 (2016)

    Google Scholar 

  9. V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow. AIP Conf. Proc. 1648, 850033 (2015)

    Google Scholar 

  10. N. Kovalnogov, E. Nadyseva, O. Shakhov, V. Kovalnogov, Control of turbulent transfer in the boundary layer through applied periodic effects. Izvestiya Vysshikh Uchebnykh Zavedenii Aviatsionaya Tekhnika 1, 49–53 (1998)

    Google Scholar 

  11. V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Modeling and development of cooling technology of turbine engine blades. Int. Rev. Mech. Eng. 9(4), 331–335 (2015)

    Google Scholar 

  12. C.-L. Lin, T.E. Simos, Highly efficient, singularly P–stable, and low–cost phase–fitting two–step method of 14th order for problems in chemistry. J. Math. Chem. (in press)

  13. S. Kottwitz, LaTeX Cookbook, pp. 231–236, Packt Publishing Ltd., Birmingham B3 2PB, UK (2015)

  14. T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    MathSciNet  Google Scholar 

  15. W. Bao, C.-L. Lin, B. Sun, T.E. Simos, Two-step, fourteenth-order, phase-fitting procedure with high efficiency and minimal cost for chemical problems. J. Math. Chem. 61, 1797–1823 (2023)

    MathSciNet  CAS  Google Scholar 

  16. M.A. Medvedeva, T.E. Simos, Solution of quantum chemical problems by a very effective and relatively inexpensive two-step, fourteenth-order, phase-fitting procedure. J. Math. Chem. 61, 1888–1915 (2023)

    MathSciNet  CAS  Google Scholar 

  17. D. Yu, C.-L. Lin, B. Sun, T.E. Simos, Solution of quantum chemical problems using an extremely successful and reasonably cost two-step, fourteenth-order phase-fitting approach. J. Math. Chem. 61, 2045–2078 (2023)

    MathSciNet  Google Scholar 

  18. K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties. J. Math. Chem. (in press)

  19. M.M. Chawla, S.R. Sharma, Families of 5th order Nyström methods for Y’’=F(X, Y) and intervals of periodicity. Computing 26(3), 247–256 (1981)

    MathSciNet  Google Scholar 

  20. J.M. Franco, M. Palacios, High-order P-stable multistep methods. J. Comput. Appl. Math. 30, 1–10 (1990)

    MathSciNet  Google Scholar 

  21. J.D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem (Wiley, New York, 1991), pp.104–107

    Google Scholar 

  22. E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    ADS  MathSciNet  Google Scholar 

  23. M.M. Chawla, S.R. Sharma, Intervals of periodicity and absolute stability of explicit Nyström methods for Y’’=F(X, Y). Bit 21(4), 455–464 (1981)

    MathSciNet  Google Scholar 

  24. M.M. Chawla, Unconditionally stable Noumerov-type methods for 2nd order differential-equations. Bit 23(4), 541–542 (1983)

    MathSciNet  Google Scholar 

  25. http://www.burtleburtle.net/bob/math/multistep.html

  26. M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277–281 (1984)

    MathSciNet  Google Scholar 

  27. M.M. Chawla, Numerov made explicit has better stability. Bit 24(1), 117–118 (1984)

    MathSciNet  Google Scholar 

  28. M.M. Chawla, P.S. Rao, High-accuracy p-stable methods for Y” = F(T,Y). IMA J. Numer. Anal. 5(2), 215–220 (1985) and M.M. Chawla, Correction IMA J. Numer. Anal. 6(2), 252–252 (1986)

  29. T. Lyche, Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65–75 (1972)

    MathSciNet  Google Scholar 

  30. R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)

    MathSciNet  Google Scholar 

  31. J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    MathSciNet  Google Scholar 

  32. M.M. Chawla, A new class of explicit 2-step 4th order methods for Y’’ = F(T, Y) with extended intervals of periodicity. J. Comput. Appl. Math. 14(3), 467–470 (1986)

    MathSciNet  Google Scholar 

  33. M.M. Chawla, B. Neta, Families of 2-step 4th-order P-stable methods for 2nd-order differential-equations. J. Comput. Appl. Math. 15(2), 213–223 (1986)

    MathSciNet  Google Scholar 

  34. M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd-order periodic initial-value problems. 2. Explicit method. J. Comput. Appl. Math. 15(3), 329–337 (1986)

    MathSciNet  Google Scholar 

  35. M.M. Chawla, P.S. Rao, B. Neta, 2-Step 4th-order P-stable methods with phase-lag of order 6 for Y’’=F(T, Y). J. Comput. Appl. Math. 16(2), 233–236 (1986)

    MathSciNet  Google Scholar 

  36. M.M. Chawla, P.S. Rao, An explicit 6th-order method with phase-lag of order 8 for Y’’=F(T, Y). J. Comput. Appl. Math. 17(3), 365–368 (1987)

    MathSciNet  Google Scholar 

  37. M.M. Chawla, M.A. Al-Zanaidi, Non-dissipative extended one-step methods for oscillatory problems. Int. J. Comput. Math. 69(1–2), 85–100 (1998)

    MathSciNet  Google Scholar 

  38. M.M. Chawla, M.A. Al-Zanaidi, A two-stage fourth-order “Almost’’ P-stable method for oscillatory problems. J. Comput. Appl. Math. 89(1), 115–118 (1998)

    MathSciNet  Google Scholar 

  39. M.M. Chawla, M.A. Al-Zanaidi, S.S. Al-Ghonaim, Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions. Math. Comput. Model. 29(2), 63–72 (1999)

    MathSciNet  Google Scholar 

  40. J.P. Coleman, Numerical-methods for Y’’=F(X, Y) via rational-approximations for the cosine. IMA J. Numer. Anal. 9(2), 145–165 (1989)

    MathSciNet  Google Scholar 

  41. J.P. Coleman, A.S. Booth, Analysis of A Family of Chebyshev Methods for Y’’ = F(X, Y). J. Comput. Appl. Math. 44(1), 95–114 (1992)

    MathSciNet  Google Scholar 

  42. J.P. Coleman, L.G. Ixaru, P-stability and exponential-fitting methods for Y’’=F(X, Y). IMA J. Numer. Anal. 16(2), 179–199 (1996)

    MathSciNet  Google Scholar 

  43. J.P. Coleman, S.C. Duxbury, Mixed collocation methods for Y ’ ’ = F(X, Y). J. Comput. Appl. Math. 126(1–2), 47–75 (2000)

    ADS  MathSciNet  Google Scholar 

  44. L.G. Ixaru, S. Berceanu, Coleman method maximally adapted to the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 11–20 (1987)

    ADS  Google Scholar 

  45. L.G. Ixaru, The Numerov method and singular potentials. J. Comput. Phys. 72(1), 270–274 (1987)

    ADS  MathSciNet  CAS  Google Scholar 

  46. L.G. Ixaru, M. Rizea, Numerov method maximally adapted to the Schrödinger-equation. J. Comput. Phys. 73(2), 306–324 (1987)

    ADS  MathSciNet  Google Scholar 

  47. L.G. Ixaru, H. De Meyer, G. Vanden Berghe, M. Van Daele, Expfit4—a Fortran program for the numerical solution of systems of nonlinear second-order initial-value problems. Comput. Phys. Commun. 100(1–2), 71–80 (1997)

    ADS  CAS  Google Scholar 

  48. L.G. Ixaru, G. Vanden Berghe, H. De Meyer, M. Van Daele, Four-step exponential-fitted methods for nonlinear physical problems. Comput. Phys. Commun. 100(1–2), 56–70 (1997)

    ADS  CAS  Google Scholar 

  49. L.G. Ixaru, M. Rizea, Four step methods for Y’’=F(X, Y). J. Comput. Appl. Math. 79(1), 87–99 (1997)

    MathSciNet  Google Scholar 

  50. M. Van Daele, G. Vanden Berghe, H. De Meyer, L.G. Ixaru, Exponential-fitted four-step methods for Y ’ ’=F(X,Y). Int. J. Comput. Math. 66(3–4), 299–309 (1998)

    MathSciNet  Google Scholar 

  51. L.G. Ixaru, B. Paternoster, A conditionally P-stable fourth-order exponential-fitting method for Y ’ ’ = F(X, Y). J. Comput. Appl. Math. 106(1), 87–98 (1999)

    MathSciNet  Google Scholar 

  52. L.G. Ixaru, Numerical operations on oscillatory functions. Comput. Chem. 25(1), 39–53 (2001)

    PubMed  CAS  Google Scholar 

  53. L.G. Ixaru, G. Vanden Berghe, H. De Meyer, Exponentially fitted variable two-step BDF algorithm for first order odes. Comput. Phys. Commun. 150(2), 116–128 (2003)

    ADS  MathSciNet  CAS  Google Scholar 

  54. M.A. Medvedev, T.E. Simos, A three-stages multistep teeming in phase algorithm for computational problems in chemistry. J. Math. Chem. 57(6), 1598–1617 (2019)

    MathSciNet  CAS  Google Scholar 

  55. M.A. Medvedev, T.E. Simos, A phase-fitting and first derivative phase-fitting singularly P-stable economical two-step method for problems in quantum chemistry. J. Math. Chem. 60, 1383–1404 (2022)

    MathSciNet  CAS  Google Scholar 

  56. B. Sun, C.-L. Lin, T.E. Simos, A. Phase-Fitting, First and second derivatives phase-fitting singularly P-stable economical two-step method for problems in chemistry. J. Math. Chem. 60, 1480–1504 (2022)

    MathSciNet  CAS  Google Scholar 

  57. C.L. Lin, T.E. Simos, A phase-fitting, first, second and third derivatives phase-fitting singularly P-stable economical two-step method for problems in quantum chemistry. J. Math. Chem. 60, 1632–1657 (2022)

    MathSciNet  CAS  Google Scholar 

  58. C.-L. Lin, T.E. Simos, A phase-fitting singularly P-stable cost-effective two-step method for solving chemistry problems. J. Math. Chem. 60, 2094–2124 (2022)

    MathSciNet  CAS  Google Scholar 

  59. B. Sun, C.-L. Lin, T.E. Simos, Solution to quantum chemistry problems using a phase-fitting, singularly P-stable, cost-effective two-step approach with disappearing phase-lag derivatives up to order 5. J. Math. Chem. 61, 455–489 (2023)

    MathSciNet  CAS  Google Scholar 

  60. S.V. Alekseenko, P.A. Kuibin, V.L. Okulov, Theory of Concentrated Vortices: An Introduction (Springer, Berlin, 2007)

    Google Scholar 

  61. A.A. Samarskii, N.V. Zmitrenko, S.P. Kurdyumov, A.P. Mikhailov, Thermal structures and fundamental length in a medium with nonlinear thermal conductivity and volumetric heat sources. Dokl. AN SSSR 227(2), 321–324 (1976)

    Google Scholar 

  62. C.-L. Lin, T.E. Simos, A complete in phase FiniteDiffrnc algorithm for DiffrntEqutins in chemistry. J. Math. Chem. 58(6), 1091–1132 (2020)

    MathSciNet  CAS  Google Scholar 

  63. F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)

    MathSciNet  CAS  Google Scholar 

  64. L.G. Ixaru, M. Rizea, Comparison of some four-Step Methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    ADS  CAS  Google Scholar 

  65. L.G. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)

    Google Scholar 

  66. L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    ADS  Google Scholar 

  67. J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    MathSciNet  Google Scholar 

  68. J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    MathSciNet  Google Scholar 

  69. G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    ADS  Google Scholar 

  70. A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    ADS  Google Scholar 

  71. M.M. Chawla, P.S. Rao, An Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems II explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)

    MathSciNet  Google Scholar 

  72. M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)

    MathSciNet  Google Scholar 

  73. M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation. J. Math. Chem. 48(1), 55–65 (2010)

    MathSciNet  CAS  Google Scholar 

  74. A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)

    MathSciNet  CAS  Google Scholar 

  75. A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)

    ADS  CAS  Google Scholar 

  76. R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)

    ADS  CAS  Google Scholar 

  77. R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)

    ADS  CAS  Google Scholar 

  78. M. Rizea, V. Ledoux, M. Van Daele, G. Vanden Berghe, N. Carjan, Finite difference approach for the two-dimensional Schrödinger equation with application to scission-neutron emission. Comput. Phys. Commun. 179(7), 466–478 (2008)

    ADS  CAS  Google Scholar 

  79. J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)

    MathSciNet  Google Scholar 

  80. L.G. Ixaru, M. Rizea, G. Vanden Berghe, H. De Meyer, Weights of the exponential fitting multistep algorithms for first-order odes. J. Comput. Appl. Math. 132(1), 83–93 (2001)

    ADS  MathSciNet  Google Scholar 

  81. A.D. Raptis, J.R. Cash, Exponential and Bessel fitting methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 95–103 (1987)

    ADS  Google Scholar 

  82. C.D. Papageorgiou, A.D. Raptis, A method for the solution of the Schrödinger-equation. Comput. Phys. Commun. 43(3), 325–328 (1987)

    ADS  CAS  Google Scholar 

  83. Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)

    MathSciNet  CAS  Google Scholar 

  84. A.D. Raptis, Exponential multistep methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)

    MathSciNet  Google Scholar 

  85. H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)

    MathSciNet  CAS  Google Scholar 

  86. Z. Wang, T.E. Simos, An economical eighth-order Method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)

    MathSciNet  CAS  Google Scholar 

  87. J. Ma, T.E. Simos, An efficient and computational effective method for second order problems. J. Math. Chem. 55, 1649–1668 (2017)

    MathSciNet  CAS  Google Scholar 

  88. L. Yang, T.E. Simos, An efficient and economical high order Method for the numerical approximation of the Schrödinger equation. J. Math. Chem. 55(9), 1755–1778 (2017)

    MathSciNet  CAS  Google Scholar 

  89. J.R. Cash, A.D. Raptis, A high-order method for the numerical-integration of the one-dimensional Schrödinger-equation. Comput. Phys. Commun. 33(4), 299–304 (1984)

    ADS  CAS  Google Scholar 

  90. A.D. Raptis, Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28(4), 427–431 (1983)

    ADS  Google Scholar 

  91. A.D. Raptis, 2-Step methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 28(4), 373–378 (1982)

    Google Scholar 

  92. A.D. Raptis, On the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 24(1), 1–4 (1981)

    ADS  MathSciNet  Google Scholar 

  93. A.D. Raptis, Exponential-fitting methods for the numerical-integration of the 4th-order differential-equation Y\(^{iv}\)+F.Y=G. Computing 24(2–3), 241–250 (1980)

    MathSciNet  Google Scholar 

  94. H. Van De Vyver, A symplectic exponentially fitted modified Runge-Kutta-Nyström method for the numerical integration of orbital problems. New Astron. 10(4), 261–269 (2005)

    ADS  Google Scholar 

  95. H. Van De Vyver, On the generation of P-stable exponentially fitted Runge-Kutta-Nyström methods by exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 188(2), 309–318 (2006)

    ADS  MathSciNet  Google Scholar 

  96. M. Van Daele, G. Vanden Berghe, P-stable Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 44(2), 115–131 (2007)

    ADS  MathSciNet  Google Scholar 

  97. M. Van Daele, G. Vanden Berghe, P-stable exponentially-fitted Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 46(4), 333–350 (2007)

    ADS  MathSciNet  Google Scholar 

  98. Y. Fang, W. Xinyuan, A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions. Appl. Numer. Math. 58(3), 341–351 (2008)

    MathSciNet  Google Scholar 

  99. G. Vanden Berghe, M. Van Daele, Exponentially-fitted Obrechkoff methods for second-order differential equations. Appl. Numer. Math. 59(3–4), 815–829 (2009)

    MathSciNet  Google Scholar 

  100. D. Hollevoet, M. Van Daele, G. Vanden Berghe, The optimal exponentially-fitted Numerov method for solving two-point boundary value problems. J. Comput. Appl. Math. 230(1), 260–269 (2009)

    ADS  MathSciNet  Google Scholar 

  101. J.M. Franco, L. Rández, Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs. Appl. Math. Comput. 273, 493–505 (2016)

    MathSciNet  Google Scholar 

  102. J.M. Franco, Y. Khiar, L. Rández, Two new embedded pairs of explicit Runge-Kutta methods adapted to the numerical solution of oscillatory problems. Appl. Math. Comput. 252, 45–57 (2015)

    MathSciNet  Google Scholar 

  103. J.M. Franco, I. Gomez, L. Rández, Optimization of explicit two-step hybrid methods for solving orbital and oscillatory problems. Comput. Phys. Commun. 185(10), 2527–2537 (2014)

    ADS  CAS  Google Scholar 

  104. J.M. Franco, I. Gomez, Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs. Appl. Math. Comput. 232, 643–657 (2014)

    MathSciNet  Google Scholar 

  105. J.M. Franco, I. Gomez, Symplectic explicit methods of Runge-Kutta-Nyström type for solving perturbed oscillators. J. Comput. Appl. Math. 260, 482–493 (2014)

    MathSciNet  Google Scholar 

  106. J.M. Franco, I. Gomez, Some procedures for the construction of high-order exponentially fitted Runge-Kutta-Nyström methods of explicit type. Comput. Phys. Commun. 184(4), 1310–1321 (2013)

    ADS  MathSciNet  CAS  Google Scholar 

  107. M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On some new low storage implementations of time advancing Runge-Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)

    MathSciNet  Google Scholar 

  108. M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Symmetric and symplectic exponentially fitted Runge-Kutta methods of high order. Comput. Phys. Commun. 181(12), 2044–2056 (2010)

    ADS  MathSciNet  CAS  Google Scholar 

  109. M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On high order symmetric and symplectic trigonometrically fitted Runge-Kutta methods with an even number of stages. BIT Numer. Math. 50(1), 3–21 (2010)

    MathSciNet  Google Scholar 

  110. J.M. Franco, I. Gomez, Accuracy and linear stability of RKN methods for solving second-order stiff problems. Appl. Numer. Math. 59(5), 959–975 (2009)

    MathSciNet  Google Scholar 

  111. M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type. J. Comput. Appl. Math. 223(1), 387–398 (2009)

    ADS  MathSciNet  Google Scholar 

  112. M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Structure preservation of exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 218(2), 421–434 (2008)

    ADS  MathSciNet  Google Scholar 

  113. M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type. Comput. Phys. Commun. 178(10), 732–744 (2008)

    ADS  MathSciNet  CAS  Google Scholar 

  114. J.M. Franco, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Commun. 177(6), 479–492 (2007)

    ADS  MathSciNet  CAS  Google Scholar 

  115. J.M. Franco, New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56(8), 1040–1053 (2006)

    MathSciNet  Google Scholar 

  116. J.M. Franco, Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)

    ADS  CAS  Google Scholar 

  117. J.M. Franco, Stability of explicit ARKN methods for perturbed oscillators. J. Comput. Appl. Math. 173, 389–396 (2005)

    ADS  MathSciNet  Google Scholar 

  118. X.Y. Wu, X. You, J.Y. Li, Note on derivation of order conditions for ARKN methods for perturbed oscillators. Comput. Phys. Commun. 180, 1545–1549 (2009)

    ADS  MathSciNet  CAS  Google Scholar 

  119. A. Tocino, J. Vigo-Aguiar, Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods. Math. Comput. Model. 42, 873–876 (2005)

    Google Scholar 

  120. L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods). JNAIAM J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)

    MathSciNet  Google Scholar 

  121. F. Iavernaro, D. Trigiante, High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 87–101 (2009)

    MathSciNet  Google Scholar 

  122. A. Konguetsof, A generator of families of two-step numerical methods with free parameters and minimal phase-lag. J. Math. Chem. 55(9), 1808–1832 (2017)

    MathSciNet  CAS  Google Scholar 

  123. A. Konguetsof, A hybrid method with phase-lag and derivatives equal to zero for the numerical integration of the Schrödinger equation. J. Math. Chem. 49(7), 1330–1356 (2011)

    MathSciNet  CAS  Google Scholar 

  124. H. Van de Vyver, A phase-fitted and amplification-fitted explicit two-step hybrid method for second-order periodic initial value problems. Int. J. Mod. Phys. C 17(5), 663–675 (2006)

    ADS  MathSciNet  Google Scholar 

  125. H. Van de Vyver, An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53(9), 1339–1348 (2007)

    MathSciNet  Google Scholar 

  126. Y. Fang, W. Xinyuan, A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)

    MathSciNet  Google Scholar 

  127. B. Neta, P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems. Comput. Math. Appl. 54(1), 117–126 (2007)

    MathSciNet  Google Scholar 

  128. H. Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for y ’ ’ = f (x, y). J. Comput. Appl. Math. 209(1), 33–53 (2007)

    ADS  MathSciNet  Google Scholar 

  129. H. Van de Vyver, Efficient one-step methods for the Schrödinger equation. MATCH-Commun. Math. Comput. Chem. 60(3), 711–732 (2008)

    MathSciNet  Google Scholar 

  130. J. Martín-Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer. Algorithms 48(4), 327–346 (2008)

    ADS  MathSciNet  Google Scholar 

  131. A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    MathSciNet  CAS  Google Scholar 

  132. F.A. Hendi, P-stable higher derivative methods with minimal phase-lag for solving second order differential equations. J. Appl. Math. 2011 Article ID 407151 (2011)

  133. H. Van de Vyver, Comparison of some special optimized fourth-order Runge-Kutta methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 166(2), 109–122 (2005)

    ADS  Google Scholar 

  134. Z. Wang, D. Zhao, Y. Dai, W. Dongmei, An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial-value problems. Proc. R. Soc. A-Math. Phys. Eng. Sci. 461(2058), 1639–1658 (2005)

    ADS  MathSciNet  Google Scholar 

  135. M. Van Daele, G. Vanden Berghe, H. De Meyer, Properties and implementation of R-Adams methods based on mixed-type interpolation. Comput. Math. Appl. 30(10), 37–54 (1995)

    MathSciNet  Google Scholar 

  136. J. Vigo-Aguiar, L.M. Quintales, A parallel ODE solver adapted to oscillatory problems. J. Supercomput. 19(2), 163–171 (2001)

    Google Scholar 

  137. Z. Wang, Trigonometrically-fitted method with the Fourier frequency spectrum for undamped Duffing equation. Comput. Phys. Commun. 174(2), 109–118 (2006)

    ADS  MathSciNet  CAS  Google Scholar 

  138. Z. Wang, Trigonometrically-fitted method for a periodic initial value problem with two frequencies. Comput. Phys. Commun. 175(4), 241–249 (2006)

    ADS  CAS  Google Scholar 

  139. J. Vigo-Aguiar, J.J.M. Ferrandiz, A general procedure for the adaptation of multistep Algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4), 1684–1708 (1998)

    MathSciNet  Google Scholar 

  140. J. Vigo-Aguiar, H. Ramos, Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158(1), 187–211 (2003)

    ADS  MathSciNet  Google Scholar 

  141. J. Vigo-Aguiar, S. Natesan, A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27(2), 195–206 (2004)

    Google Scholar 

  142. C. Tang, H. Yan, H. Zhang, W.R. Li, The various order explicit multistep exponential fitting for systems of ordinary differential equations. J. Comput. Appl. Math. 169(1), 171–182 (2004)

    ADS  MathSciNet  Google Scholar 

  143. C. Tang, H. Yan, H. Zhang, Z. Chen, M. Liu, G. Zhang, The arbitrary order implicit multistep schemes of exponential fitting and their applications. J. Comput. Appl. Math. 173(1), 155–168 (2005)

    ADS  MathSciNet  Google Scholar 

  144. H. Van de Vyver, Frequency evaluation for exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 184(2), 442–463 (2005)

    ADS  MathSciNet  Google Scholar 

  145. J.P. Coleman, L Gr. Ixaru, Truncation errors in exponential fitting for oscillatory problems. SIAM J. Numer. Anal. 44(4), 1441–1465 (2006)

    MathSciNet  Google Scholar 

  146. J. Martín-Vaquero, J. Vigo-Aguiar, Adapted BDF algorithms: higher-order methods and their stability. J. Sci. Comput. 32(2), 287–313 (2007)

    MathSciNet  Google Scholar 

  147. J. Vigo-Aguiar, J. Martín-Vaquero, H. Ramos, Exponential fitting BDF-Runge-Kutta algorithms. Comput. Phys. Commun. 178(1), 15–34 (2008)

    ADS  MathSciNet  CAS  Google Scholar 

  148. B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183(12), 2499–2512 (2012)

    ADS  MathSciNet  CAS  Google Scholar 

  149. Z. Wang, Obrechkoff one-step method fitted with Fourier spectrum for undamped Duffing equation. Comput. Phys. Commun. 175(11–12), 692–699 (2006)

    ADS  CAS  Google Scholar 

  150. C. Wang, Z. Wang, A P-stable eighteenth-order six-step method for periodic initial value problems. Int. J. Mod. Phys. C 18(3), 419–431 (2007)

    ADS  Google Scholar 

  151. J. Chen, Z. Wang, H. Shao, H. Hao, Highly-accurate ground state energies of the He atom and the He-like ions by Hartree SCF calculation with Obrechkoff method. Comput. Phys. Commun. 179(7), 486–491 (2008)

    ADS  MathSciNet  CAS  Google Scholar 

  152. H. Shao, Z. Wang, Arbitrarily precise numerical solutions of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 180(1), 1–7 (2009)

    ADS  CAS  Google Scholar 

  153. H. Shao, Z. Wang, Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization. Phys. Rev. E 79(5). Article Number: 056705 (2009)

  154. Z. Wang, H. Shao, A new kind of discretization scheme for solving a two-dimensional time-independent Schrödinger equation. Comput. Phys. Commun. 180(6), 842–849 (2009)

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally in this paper.

Corresponding author

Correspondence to T. E. Simos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or other ethical conflicts concerning this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. E. Simos: Highly Cited Researcher (2001–2013 List, 2017 List and 2018 List), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences. Corresponding Member of European Academy of Arts, Sciences and Humanities.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 253 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedeva, M.A., Simos, T.E. An exceedingly effective and inexpensive two-step, fourteenth-order phase-fitting method for solving quantum chemical issues. J Math Chem 62, 761–801 (2024). https://doi.org/10.1007/s10910-023-01560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-023-01560-x

Keywords

Mathematics Subject Classification

Navigation