Skip to main content
Log in

On the information obtained using Shannon’s entropy through spin density

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we analyze the reaction \(H_{2} + H\) using Shannon’s entropy defined in terms of spin density in position and momentum spaces. We analyzed the changes in the trends obtained in terms of the first derivative of Shannon’s entropy with respect to the electron number and with respect to spin density, in the first case, we show that this result is related to Fukui’s function, while in the second case, we found that the functional derivative is related to the so-called generalized moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In previous work we had discussed aspects of several definitions of joint probability and conditional probability, in which we suggest that there is no a definitive definition on them, see Ref. [76].

  2. It is important to mention that in Eqs. (17) and (18) were written with the consideration of \(Q(\textbf{r})\) and \(Q(\textbf{q})\) are greater that zero, otherwise the numerical calculations are not possible. In such cases, one could use the following expressions, \(S_{r}^{\alpha \beta } = -\frac{1}{k_{Qr_{\max }}} \int \left| \left( \frac{Q(\textbf{r})}{Qr_{\max }}\right) \right| \ln \left| \left( \frac{Q(\textbf{r})}{Qr_{\max }}\right) \right| d\textbf{r}\), and \(S_{q}^{\alpha \beta } = -\frac{1}{k_{Qq_{\max }}} \int \left| \left( \frac{Q(\textbf{q})}{Qq_{\max }}\right) \right| \ln \left| \left( \frac{Q(\textbf{q})}{Qq_{\max }}\right) \right| d\textbf{q}\).

References

  1. L.H. Thomas, Proc. Camb. Philos. Soc. 23, 542 (1927)

    CAS  Google Scholar 

  2. E. Fermi, Rend. Accad. Naz. Lincei. 6, 602 (1927)

    CAS  Google Scholar 

  3. P.A.M. Dirac, Proc. Camb. Philos. R. Soc. 26, 376 (1930)

    CAS  Google Scholar 

  4. C.E. Shannon, Bell Syst. Tech. J. 27, 379–623 (1948)

    Google Scholar 

  5. N.H. March, Electron Density Theory of Atoms and Molecules (Academic Press, London, 1992)

    Google Scholar 

  6. M. Hô, R.P. Sagar, J.M. Pérez-Jordá, V.H. Smith Jr., R.O. Esquivel, Chem. Phys. Lett. 219, 15 (1994)

    Google Scholar 

  7. M. Hô, R.P. Sagar, V.H. Smith Jr., R. Esquivel, J. Phys. B 27, 5149 (1994)

    Google Scholar 

  8. R.O. Esquivel, A.L. Rodríguez, R.P. Sagar, M. Hô, V.H. Smith Jr., Phys. Rev. A 259, 54 (1996)

    Google Scholar 

  9. M. Hô, B.J. Clark, V.H. Smith Jr., D.F. Weaver, C. Gatti, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 112, 7572 (2000)

    Google Scholar 

  10. R.P. Sagar, J.C. Ramŕez, R.O. Esquivel, Phys. Rev. A. 63, 022509–1 (2001)

  11. N.L. Guevara, R.P. Sagar, R.O. Esquivel, Phys. Rev. A. 012507–1, 67 (2003)

    Google Scholar 

  12. N. Flores-Gallegos, Chem. Phys. Lett. 650, 57 (2016)

    CAS  Google Scholar 

  13. N. Flores-Gallegos, J. Theor. Comput. Chem. 16(6), 1750051 (2017)

    CAS  Google Scholar 

  14. N. Flores-Gallegos, Chem. Phys. Lett. 720, 1 (2019)

    CAS  Google Scholar 

  15. R.F. Nalewajski, Piotr Gurdek. J. Math. Chem. 49, 1226 (2011)

    CAS  Google Scholar 

  16. R.F. Nalewajski, J. Math. Chem. 43, 780 (2007)

    Google Scholar 

  17. R.F. Nalewajski, P. Gurdek, Struct. Chem. 23, 1383 (2012)

    CAS  Google Scholar 

  18. R.F. Nalewajski, J. Math. Chem. 43, 265 (2006)

    Google Scholar 

  19. R.F. Nalewajski, J. Math. Chem. 49, 2308 (2011)

    CAS  Google Scholar 

  20. R.F. Nalewajski, J. Math. Chem. 49, 371 (2011)

    CAS  Google Scholar 

  21. R.F. Nalewajski, J. Math. Chem. 52, 42 (2014)

    CAS  Google Scholar 

  22. R.F. Nalewajski, J. Math. Chem. 52, 1292 (2014)

    CAS  Google Scholar 

  23. R.F. Nalewajski, J. Math. Chem. 53, 1 (2015)

    CAS  Google Scholar 

  24. D. Szczepanik, Janusz Mrozek. J. Math. Chem. 49, 562 (2011)

    CAS  Google Scholar 

  25. J.C. Bolívar, A. Nagy, E. Romera, Physica A 498, 66 (2018)

    Google Scholar 

  26. B. Godó, A. Nagy, Chaos. 27, 073104 (2017)

    PubMed  Google Scholar 

  27. B. Godó, A. Nagy, Chaos 26, 083102 (2016)

    PubMed  Google Scholar 

  28. A. Nagy, E. Romera, Europhys. Lett. 109, 60002 (2015)

    Google Scholar 

  29. B. Godó, A. Nagy, J. Phys. Conf. Series 410, 012090 (2013)

    Google Scholar 

  30. E. Romera, R. del Real, M. Calixto, S. Nagy, A. Nagy, J. Math. Chem. 51, 620 (2013)

    CAS  Google Scholar 

  31. A. Nagy, E. Romera, Physica A 391, 3650 (2012)

    Google Scholar 

  32. M. Calixto, A. Nagy, I. Paradela, E. Romera, Phys. Rev. A 85, 053813 (2012)

    Google Scholar 

  33. I. Hornyák, A. Nagy, Int. J. Quantum Chem. 112, 1285 (2012)

    Google Scholar 

  34. E. Romera, A. Nagy, Phys. Lett. A 375, 3066 (2011)

    CAS  Google Scholar 

  35. A. Nagy, E. Romera, Phys. Lett. A 373, 844 (2009)

    CAS  Google Scholar 

  36. A. Nagy, E. Romera, Int. J. Quantum Chem. 109, 2490 (2009)

    CAS  Google Scholar 

  37. E. Romera, R. López-Ruiz, J. Sanudo, A. Nagy, Int. Rev. Phys. 3, 207 (2009)

    Google Scholar 

  38. E. Romera, A. Nagy, Phys. Lett. A 372, 4918 (2008)

    CAS  Google Scholar 

  39. E. Romera, A. Nagy, Phys. Lett. A 372, 6823 (2008)

    CAS  Google Scholar 

  40. R. Carbo, L. Leyda, M. Arnau, Int. J. Quantum Chem. 17, 1185 (1980)

    CAS  Google Scholar 

  41. R. Carbó-Dorca, E. Besalú, J. Mol. Struct. (Teochem). 451, 11 (1998)

    Google Scholar 

  42. P. Bultinck, X. Gironés, R. Carbó-Dorca, in Reviews in Computational Chemistry, Volume 21. ed. by K.B. Lipkowitz, R. Larter, and T.R. Cundari (Wiley 2005), pp. 127–207

  43. R. Carbó, B. Calabuig, J. Quantum Chem. 42, 1681 (1992)

    Google Scholar 

  44. R. Carbó, B. Calabuig, J. Quantum Chem. 42, 1696 (1992)

    Google Scholar 

  45. P. Cassam-Chenaï, G.S. Chandler, Int. J. Quantum Chem. 46, 593 (1993)

    Google Scholar 

  46. S. Kaprzyk, Acta Phys. Pol. A 91(1), 135 (1997)

    CAS  Google Scholar 

  47. M. Borgh, M. Toreblad, M. Koskinen, M. Manninen, S. Åberg, S.M. Reiman, Int. J. Quantum Chem. 105, 817 (2005)

    CAS  Google Scholar 

  48. M.J. Cooper, J.A. Duffy, J. Phys. Chem. Solids 61, 345 (2000)

    CAS  Google Scholar 

  49. C.R. Jacob, M. Reiher, Int. J. Quantum Chem. 112(23), 3661 (2012)

    CAS  Google Scholar 

  50. A.V. Luzanov, Int. J. Quantum Chem. 112(17), 2915 (2012)

    CAS  Google Scholar 

  51. S. Paziani, S. Moroni, P. Gori-Giorgi, G.B. Bachelet, Phys. Rev. B 73, 155111 (2006)

    Google Scholar 

  52. S. Perumal, B. Minaev, H. Ågren, J. Chem. Phys. A 136, 104702 (2012)

    CAS  Google Scholar 

  53. M. Witwicki, P.K. Walencik, J. Jezierska, J. Mol. Model. 26, 10 (2020)

    CAS  Google Scholar 

  54. F. Von, Hund. Z. Phys. 33, 345 (1925)

    Google Scholar 

  55. Z. Phys. D. 36, 197 (1996)

  56. H.M. McConnell, D.B. Chesnut, J. Chem. Phys. 27, 984 (1957)

    CAS  Google Scholar 

  57. F.C. Adam, W.G. Laidlaw, Aust. J. Chem. 19, 897 (1966)

    CAS  Google Scholar 

  58. W. Gee, C.C. Canters, E.J. De Boer, J. Chem. Phys. 54(7), 3026 (1971)

    Google Scholar 

  59. M.S. Davis, K. Morokuma, R.W. Kreilick, J. Chem. Phys. 94(16), 5588 (1972)

    CAS  Google Scholar 

  60. R. Mason, A.R.P. Smith, J.N. Varghese, J. Am. Chem. Soc. 103, 1300 (1981)

    CAS  Google Scholar 

  61. B.N. Figgs, Proc. Indian Acad. Sci. Chem. Sci. 102(3), 403 (1990)

    Google Scholar 

  62. A. Zheludev, V. Barone, M. Bonnet, B. Delley, A. Grand, E. Ressouche, P. Rey, R. Subra, J. Schweizer, J. Am. Chem. Soc. 116, 2019 (1994)

    CAS  Google Scholar 

  63. M. Filatov, D. Cremer, J. Chem. Phys. 123, 124101 (2005)

    PubMed  Google Scholar 

  64. J. Luzon, J. Campo, F. Palacio, G.J. McIntyre, J.M. Rawson, R.J. Less, C.M. Pask, A. Alberola, R.D. Farley, D.M. Murphy, A.E. Goeta, Phys. Rev. B 81, 144429 (2010)

    Google Scholar 

  65. Y.-C. Chen, S.-H. Hsu, C.-C. Kaun, M.-T. Lin, J. Phys. Chem. C 118, 21199 (2014)

    CAS  Google Scholar 

  66. N.A. Chumakova, A.L. Buchachenkob, Mendeleev Commun. 25, 264 (2015)

    CAS  Google Scholar 

  67. G. Bruno, G. Macetti, L. Lo Presti, C. Gatti, Molecules 25, 3537 (2020)

  68. M. Levien, M. Reinhard, M. Hiller, I. Tkach, M. Bennati, Tomas Orlando. Phys. Chem. Chem. Phys. 23, 4480 (2021)

    CAS  PubMed  Google Scholar 

  69. R.F.K. Spada, M.P. Francoa, R. Nieman, A.J.A. Aquino, R. Shepard, R. Plasser, H. Lischka, Mol. Phys. 59, e2091049 (2022)

    Google Scholar 

  70. G.W. Fernando, Handbook Metal. Phys. 4, 33 (2008)

    Google Scholar 

  71. J.G. Park, B.A. Collins, L.E. Darago et al., Nat. Chem. 13, 594 (2021)

    CAS  PubMed  Google Scholar 

  72. H.-F. Li, C. Cao, A. Wildes, W. Schmidt, K. Schmalzl, B. Hou, L.-P. Regnault, C. Zhang, P. Meuffels, W. Löser, G. Roth, Sci. Rep. 5, 7968 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. N. Flores-Gallegos, Chem. Phys. Lett. 650, 57 (2016)

    CAS  Google Scholar 

  74. N. Flores-Gallegos, Chem. Phys. Lett. 720, 1 (2019)

    CAS  Google Scholar 

  75. N. Flores-Gallegos, J. Math. Chem. 61, 723 (2023)

    CAS  Google Scholar 

  76. N. Flores-Gallegos, J. Math. Chem. 60, 1405 (2022)

    CAS  Google Scholar 

  77. I. Białynicki-Birula, J. Mycielski, Commun. Math Phys. 44, 129 (1975)

    Google Scholar 

  78. J.C. Corchado, J.L. Bravo, J. Espinosa-Garcia, J. Chem. Phys. 130, 184314 (2009)

    PubMed  Google Scholar 

  79. J. Espinosa-García, G. Nyman, J.C. Corchado, J. Chem. Phys. 130, 184345 (2009)

    Google Scholar 

  80. X. Zhang, B.J. Braams, J.M. Bowman, J. Chem. Phys. 124, 021104 (2006)

    PubMed  Google Scholar 

  81. M.J. Frisch, G.W. Trucks, Schlegel HB, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, Iyengar SS, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, R. Komaromi, L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkar, M. Challacombe, P.M.W. Gill, Johnson B, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford, 2004)

  82. J. Pérez-Jordá, A.D. Becke, E. San-Fabian, J. Chem. Phys. 100, 6520 (1994)

    Google Scholar 

  83. M. Kohout, Program DGrid, version 4.2, (2007)

  84. R. Pucci, N.H. March, J. Chem. Phys. 76, 4089 (1982)

    CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the CONACyT, the PRODEP-SEP program for support.

Author information

Authors and Affiliations

Authors

Contributions

NFG, wrote the manuscript, performed all the calculations, and did all the figures. The author reviewed the manuscript.

Corresponding author

Correspondence to N. Flores-Gallegos.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Gallegos, N. On the information obtained using Shannon’s entropy through spin density. J Math Chem 61, 1532–1544 (2023). https://doi.org/10.1007/s10910-023-01481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-023-01481-9

Keywords

Navigation