Skip to main content
Log in

Wavelet solution of a strongly nonlinear Lane–Emden equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Capturing solution near the singular point of any nonlinear SBVPs is challenging because coefficients involved in the differential equation blow up near singularities. In this article, we aim to construct a general method based on orthogonal polynomials as wavelets, i.e., orthogonal polynomial wavelet method (OPWM). We also discuss the convergence of OPWM as a particular case. We discuss multiresolution analysis for wavelets generated by orthogonal polynomials, e.g., Hermite, Legendre, Chebyshev, Laguerre, and Gegenbauer. Then we use these orthogonal polynomial wavelets for solving nonlinear SBVPs. These wavelets can deal with singularities easily and efficiently. To deal with the nonlinearity, we use both Newton’s quasilinearization and the Newton–Raphson method. To show the importance and accuracy of the proposed methods, we solve the Lane–Emden type of problems and compare the computed solutions with the known solutions. As the resolution is increased the computed solutions converge to exact solutions or known solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Chandrasekhar, Introduction to the Study of Stellar Structure (Dover Publications, Mineola, 1967)

    Google Scholar 

  2. P.L. Chambre, On the solution of the Poisson Boltzmann equation with application to the theory of thermal explosions. J. Chem. Phys. 20, 1795–1797 (1952)

    Article  CAS  Google Scholar 

  3. R.C. Duggan, A.M. Goodman, Pointwise bounds for a nonlinear heat conduction model of the human head. Bull. Math. Biol. 48, 229–236 (1986)

    Article  CAS  PubMed  Google Scholar 

  4. R.W. Dickey, Rotationally symmetric solutions for shallow membrane caps. Q. Appl. Math. 47, 571–581 (1989)

    Article  Google Scholar 

  5. J.V. Baxley, S.B. Robinson, Nonlinear boundary value problems for shallow membrane caps II. J. Comput. Appl. Math. 88, 203–224 (1998)

    Article  Google Scholar 

  6. R.K. Pandey, A.K. Verma, Existence-uniqueness results for a class of singular boundary value problems arising in physiology. Nonlinear Anal. Real World Appl. 9, 40–52 (2008)

    Article  Google Scholar 

  7. R.K. Pandey, A.K. Verma, Existence-uniqueness results for a class of singular boundary value problems—II. J. Math. Anal. Appl. 338, 1387–1396 (2008)

    Article  Google Scholar 

  8. R.K. Pandey, A.K. Verma, A note on existence-uniqueness results for a class of doubly singular boundary value problems. Nonlinear Anal. Theory Methods Appl. 71, 3477–3487 (2009)

    Article  Google Scholar 

  9. A.K. Verma, B. Pandit, L. Verma, R.P. Agarwal, A review on a class of second order nonlinear singular BVPs. Mathematics 8, 1045 (2020)

    Article  Google Scholar 

  10. M.M. Chawla, R. Subramanian, H.L. Sathi, A fourth order method for a singular two-point boundary value problem. BIT Numer. Math. 28, 88–97 (1988)

    Article  Google Scholar 

  11. R.K. Pandey, A.K. Singh, On the convergence of a fourth-order method for a class of singular boundary value problems. J. Comput. Appl. Math. 224, 734–742 (2009)

    Article  Google Scholar 

  12. A.K. Verma, S. Kayenat, Applications of modified Mickens-type NSFD schemes to Lane–Emden equations. Comput. Appl. Math. 39, 227 (2020)

    Article  Google Scholar 

  13. S. Kayenat, A.K. Verma, On the choice of denominator functions and convergence of NSFD schemes for a class of nonlinear SBVP. Math. Comput. Simul. 200, 263–284 (2022)

    Article  Google Scholar 

  14. A.K. Verma, N. Kumar, M. Singh, R.P. Agarwal, A note on variation iteration method with an application on Lane–Emden equations. Eng. Comput. 38(10), 3932–3943 (2021)

    Article  Google Scholar 

  15. C. Cattani, Haar wavelet splines. J. Interdiscip. Math. 4, 35–47 (2001)

    Article  Google Scholar 

  16. H. Kaur, R.C. Mittal, V. Mishra, Haar wavelet approximate solutions for the generalized Lane–Emden equations arising in astrophysics. Comput. Phys. Commun. 184, 2169–2177 (2013)

    Article  CAS  Google Scholar 

  17. R.C. Mittal, S. Pandit, Sensitivity analysis of shock wave Burgers’ equation via a novel algorithm based on scale-3 Haar wavelets. Int. J. Comput. Math. 95, 601–625 (2018)

    Article  Google Scholar 

  18. S.C. Shiralashetti, A.B. Deshi, P.B. Mutalik Desai, Haar wavelet collocation method for the numerical solution of singular initial value problems. Ain Shams Eng. J. 7, 663–670 (2016)

    Article  Google Scholar 

  19. A.K. Verma, D. Tiwari, Higher resolution methods based on quasilinearization and Haar wavelets on Lane–Emden equations. Int. J. Wavelets Multiresolut. Inf. Process. 17, 1950005 (2019)

    Article  Google Scholar 

  20. R. Singh, H. Garg, V. Guleria, Haar wavelet collocation method for Lane–Emden equations with Dirichlet, Neumann and Neumann–Robin boundary conditions. J. Comput. Appl. Math. 346, 150–161 (2019)

    Article  Google Scholar 

  21. R. Singh, J. Shahni, H. Garg, A. Garg, Haar wavelet collocation approach for Lane–Emden equations arising in mathematical physics and astrophysics. Eur. Phys. J. Plus 134, 548 (2019)

    Article  Google Scholar 

  22. H. Maan, R.C. Mittal, V. Mishra, Haar wavelet quasilinearization approach for solving nonlinear boundary value problems. Am. J. Comput. Math. 1, 176–182 (2011)

    Article  Google Scholar 

  23. V.B. Mandelzweig, F. Tabakin, Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141, 268–281 (2001)

    Article  CAS  Google Scholar 

  24. J. Majak, M. Pohlak, M. Eerme, B. Shvartsman, Solving ordinary differential equations with higher order Haar wavelet method. AIP Conf. Proc. 2116, 330002 (2019)

    Article  Google Scholar 

  25. J. Majak, M. Pohlak, K. Karjust, M. Eerme, J. Kurnitski, B.S. Shvartsman, New higher order Haar wavelet method: application to FGM structures. Compos. Struct. 201, 72–78 (2018)

    Article  Google Scholar 

  26. F. Khellat, S.A. Yousefi, The linear Legendre mother wavelets operational matrix of integration and its application. J. Frankl. Inst. 343, 181–190 (2006)

    Article  Google Scholar 

  27. F. Mohammadi, M.M. Hosseini, A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations. J. Frankl. Inst. 348, 1787–1796 (2011)

    Article  Google Scholar 

  28. V.A. Vijesh, L.A. Sunny, K.H. Kumar, Legendre wavelet quasilinearization technique for solving Q-difference equations. J. Differ. Equ. Appl. 22, 594–606 (2016)

    Article  Google Scholar 

  29. K. Maleknejad, A. Hoseingholipour, The impact of Legendre wavelet collocation method on the solutions of nonlinear system of two-dimensional integral equations. Int. J. Comput. Math. 97(11), 1–16 (2019)

    Google Scholar 

  30. R. Rajaraman, G. Hariharan, An efficient wavelet based spectral method to singular boundary value problems. J. Math. Chem. 53, 2095–2113 (2015)

    Article  CAS  Google Scholar 

  31. K. Kumar, V.A. Vijesh, Chebyshev wavelet quasilinearization scheme for coupled nonlinear sine-Gordon equations. J. Comput. Nonlinear Dyn. 12, 011018 (2017)

    Article  Google Scholar 

  32. M. Usman, S.T. Mohyud-Din, Physicists Hermite wavelet method for singular differential equations. Int. J. Adv. Appl. Math. Mech. 1, 16–29 (2013)

    Google Scholar 

  33. A.K. Verma, D. Tiwari, On some computational aspects of Hermite and Haar wavelets on a class of nonlinear singular BVPs. Appl. Anal. Discrete Math. 3, 1 (2021). https://doi.org/10.2298/AADM191123020V

    Article  Google Scholar 

  34. F. Zhou, X. Xu, Numerical solutions for the linear and nonlinear singular boundary value problems using Laguerre wavelets. Adv. Differ. Equ. 2016, 17 (2016)

    Article  Google Scholar 

  35. M. Ur Rehman, U. Saeed, Gegenbauer wavelets operational matrix method for fractional differential equations. J. Korean Math. Soc. 52, 1069–1096 (2015)

    Article  Google Scholar 

  36. S. Kumar, A new analytical modelling for fractional telegraph equation via Laplace transform. Appl. Math. Model. 38, 3154–3163 (2014)

    Article  Google Scholar 

  37. S. Kumar, M.M. Rashidi, New analytical method for gas dynamics equation arising in shock fronts. Comput. Phys. Commun. 185, 1947–1954 (2014)

    Article  CAS  Google Scholar 

  38. B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solitons Fractals 133, 109619 (2020)

    Article  Google Scholar 

  39. E.F.D. Goufo, S. Kumar, S.B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solitons Fractals 130, 109467 (2020)

    Article  Google Scholar 

  40. S. Kumar, R. Kumar, R.P. Agarwal, B. Samet, A study of fractional Lotka–Volterra population model using Haar wavelet and Adams–Bashforth–Moulton methods. Math. Methods Appl. Sci. 43, 5564–5578 (2020)

    Article  Google Scholar 

  41. S. Pourghanbar, J. Manafian, M. Ranjbar, A. Aliyeva, Y.S. Gasimov, An efficient alternating direction explicit method for solving a nonlinear partial differential equation. Math. Probl. Eng. 2020, 9647416 (2020)

    Article  Google Scholar 

  42. N. Can, O. Nikan, M. Rasoulizadeh, H. Jafari, Y. Gasimov, Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Therm. Sci. 24, 49–58 (2020)

    Article  Google Scholar 

  43. F. Aboud, A. Nachaoui, Single-rank quasi-Newton methods for the solution of nonlinear semiconductor equations. Adv. Math. Models Appl. 5, 70–79 (2020)

    Google Scholar 

  44. I. Aziz, Q.U. Ain, Numerical solution of partial integro-differential equations with weakly singular kernels. Adv. Math. Models Appl. 5, 149–160 (2020)

    Google Scholar 

  45. A. Boggess, F.J. Narcowich, A First Course in Wavelets with Fourier Analysis (Wiley, Hoboken, 2009)

    Google Scholar 

  46. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, 1992)

    Book  Google Scholar 

  47. M.C. Pereyra, L.A. Ward, Harmonic Analysis: From Fourier to Wavelets (Student Mathematical Library, 2012)

  48. J. Biazar, H. Ebrahimi, Chebyshev wavelets approach for nonlinear systems of Volterra integral equations. Comput. Math. Appl. 63, 608–616 (2012)

    Article  Google Scholar 

  49. U. Saeed, M. Ur Rehman, Hermite wavelet method for fractional delay differential equations. J. Differ. Equ. 2014, 359093 (2014)

    Google Scholar 

  50. M.A. Iqbal, U. Saeed, S.T. Mohyud-Din, Modified Laguerre wavelets method for delay differential equations of fractional-order. Egypt. J. Basic Appl. Sci. 2, 50–54 (2015)

    Google Scholar 

  51. A.K. Gupta, S. Saha Ray, An investigation with Hermite wavelets for accurate solution of fractional Jaulent–Miodek equation associated with energy-dependent Schrodinger potential. Appl. Math. Comput. 270, 458–471 (2015)

    Google Scholar 

  52. C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems. IEEE Proc. Control Theory Appl. 144, 87–94 (1997)

    Article  Google Scholar 

  53. J. Majak, B. Shvartsman, K. Karjust, M. Mikola, A. Haavajoe, M. Pohlak, On the accuracy of the Haar wavelet discretization method. Composites B 80, 321–327 (2015)

    Article  Google Scholar 

  54. M. Singh, A.K. Verma, An effective computational technique for a class of Lane–Emden equations. J. Math. Chem. 54, 231–251 (2016)

    Article  CAS  Google Scholar 

  55. R. Jiwari, V. Kumar, R. Karan, A.S. Alshomrani, Haar wavelet quasilinearization approach for MHD Falkner–Skan flow over permeable wall via Lie group method. Int. J. Numer. Methods Heat Fluid Flow 27, 1332–1350 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, D., Verma, A.K. & Cattani, C. Wavelet solution of a strongly nonlinear Lane–Emden equation. J Math Chem 60, 2054–2080 (2022). https://doi.org/10.1007/s10910-022-01401-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-022-01401-3

Keywords

AMS Subject Classification:

Navigation