Skip to main content
Log in

Formulation of a phonon band calculation for molecular crystals using a coarse-grained coordinate approach under periodic boundary conditions

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A phonon band calculation scheme based on our previously proposed coarse-graining theory under periodic boundary conditions was formulated. Starting with a simple one-dimensional, one-body periodic system, we introduced the basis set of a phase-shift coordinate system that can easily afford the discrete Fourier transformation of vectors and matrices with infinite dimensions. When the unit cell contains two or more bodies, the basis set of the phase-shift coordinate system is represented with tensors. By choosing an appropriate tensor basis set of a coarse-grained space, we can approximately block-diagonalize the dynamical matrix. Then, we can obtain the inertia and stiffness matrices represented by the given coarse-grained coordinate system, upon which the application of the mass-weighted Hessian equation affords a set of angular frequencies (ω) as functions of the wavenumber (k). Thus, the phonon band structure (kω plot) is obtained based on the coarse-graining approximation. When this approximation is applied to molecular assemblies comprising hydrogen bonding, the computational error resulting from this scheme is expected to be a maximum of a few cm−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

M :

Mass

µ :

Reciprocal mass

K :

Force constant of a spring

ω :

Angular frequency

A :

Matrix A

(A)ij :

(i, j)-Element of A

{A}ij :

(i, j)-Block of A

\(\varvec{\tilde{A}}\) :

Non-square partial matrix of A

References

  1. G.R. Desiraju, J. Am. Chem. Soc. 135, 9952 (2013)

    Article  CAS  Google Scholar 

  2. D. Braga, F. Grepioni, L. Maini, Chem. Commun. 46, 6232 (2010)

    Article  CAS  Google Scholar 

  3. P. Erk, H. Hengelsberg, M.F. Haddow, R. van Gelder, CrystEngComm 6, 474 (2004)

    Article  CAS  Google Scholar 

  4. L. Yu, Acc. Chem. Res. 43, 1257 (2010)

    Article  CAS  Google Scholar 

  5. J.P. Reddy, D. Swain, V.R. Pedireddi, Cryst. Growth Des. 14, 5064 (2014)

    Article  CAS  Google Scholar 

  6. A. Zimmermann, B. Frøstrup, A.D. Bond, Cryst. Growth Des. 12, 2961 (2012)

    Article  CAS  Google Scholar 

  7. Q. Zhang, X. Mei, Cryst. Growth Des. 16, 3535 (2016)

    Article  CAS  Google Scholar 

  8. M.T. Dove, Introduction to Lattice Dynamics (Cambridge University Press, New York, 1993)

    Book  Google Scholar 

  9. G.M. Day, J.A. Zeitler, W. Jones, T. Rades, P.F. Taday, J. Phys. Chem. B 110, 447 (2006)

    Article  CAS  Google Scholar 

  10. G.M. Day, Cryst. Rev. 17, 3 (2011)

    Article  Google Scholar 

  11. M.R.C. Williams, A.B. True, A.F. Izmaylov, T.A. French, K. Schroeck, C. Schmuttenmaer, Phys. Chem. Chem. Phys. 13, 11719 (2011)

    Article  CAS  Google Scholar 

  12. F. Zhang, M. Hayashi, H.W. Wang, K. Tominaga, O. Kambara, J.I. Nishizawa, T. Sasaki, J. Chem. Phys. 140, 174509 (2014)

    Article  Google Scholar 

  13. F. Zhang, H.-W. Wang, K. Tominaga, M. Hayashi, J. Phys. Chem. A 119, 3008 (2015)

    Article  CAS  Google Scholar 

  14. F. Zhang, O. Kambara, K. Tominaga, J. Nishizawa, T. Sasaki, H.-W. Wang, M. Hayashi, RSC Adv. 4, 269 (2014)

    Article  CAS  Google Scholar 

  15. F. Zhang, H.-W. Wang, K. Tominaga, M. Hayashi, M. Tani, Proc. of SPIE 1, 11599A (2020)

    Google Scholar 

  16. M.R.C. Williams, D.J. Aschaffenburg, B.K. Ofori-Okai, C. Schmuttenmaer, J. Phys. Chem. B 117, 10444 (2013)

    Article  CAS  Google Scholar 

  17. H. Houjou, J. Chem. Theory Comput. 5, 1814 (2009)

    Article  CAS  Google Scholar 

  18. H. Houjou, J. Chem. Phys. 135, 154111 (2011)

    Article  Google Scholar 

  19. H. Houjou, J. Math. Chem. 55, 532 (2017)

    Article  CAS  Google Scholar 

  20. M. Isogai, H. Houjou, J. Mol. Model. 24, 221 (2018)

    Article  Google Scholar 

  21. M. Isogai, M. Seshimo, H. Houjou, J. Mol. Model. 27, 140 (2021)

    Article  CAS  Google Scholar 

  22. E.B. Wilson Jr., J.C. Decius, P.C. Cross, Molecular vibrations (Dover, New York, 1980)

    Google Scholar 

  23. J. W. Ocherski, Vibrational Analysis in Gaussian (1999), http://gaussian.com/vib/ Accessed 7 Aug 2021.

  24. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., Gaussian 09w (Revison D. Gaussian Inc, Wallingford, 2013)

    Google Scholar 

  25. R. Lutwig, Angew. Chem. Int. Ed. 400, 1808 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The molecular modelling and numerical analyses were conducted by MS under supervision of HH. The manuscript was written by HH. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Hirohiko Houjou.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houjou, H., Seshimo, M. Formulation of a phonon band calculation for molecular crystals using a coarse-grained coordinate approach under periodic boundary conditions. J Math Chem 60, 613–636 (2022). https://doi.org/10.1007/s10910-022-01327-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-022-01327-w

Keywords

Mathematics Subject Classification

Navigation