Skip to main content
Log in

Algebraic treatment of non-Hermitian quadratic Hamiltonians

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We generalize a recently proposed algebraic method in order to treat non-Hermitian Hamiltonians. The approach is applied to several quadratic Hamiltonians studied earlier by other authors. Instead of solving the Schrödinger equation we simply obtain the eigenvalues of a suitable matrix representation of the operator. We take into account the existence of unitary and antiunitary symmetries in the quantum-mechanical problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Phys. Rev. A 84, 040101 (2011)

    Article  Google Scholar 

  2. H. Ramezani, J. Schindler, F.M. Ellis, U. Günther, T. Kottos, Phys. Rev. A 85, 062122 (2012)

    Article  Google Scholar 

  3. C.M. Bender, M. Gianfreda, S.K. Özdemir, B. Peng, L. Yang, Phys. Rev. A 88, 062111 (2013)

    Article  Google Scholar 

  4. B. Peng, S.K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G.L. Long, S. Fan, F. Nori, C.M. Bender, L. Yang, Nat. Phys. 20, 394 (2014)

    Article  Google Scholar 

  5. F.M. Fernández, Int. J. Theor. Phys. 54, 3871 (2015). arXiv:1402.4473 [quant-ph]

    Article  Google Scholar 

  6. F.M. Fernández, Ann. Phys. 369, 168 (2016). arXiv:1509.04267 [quant-ph]

    Article  Google Scholar 

  7. B.-G. Englert, Ann. Phys. 129, 1 (1980)

    Article  CAS  Google Scholar 

  8. C. Bender, M. Gianfreda, J. Phys. A 48, 34FT01 (2015)

    Article  Google Scholar 

  9. L. Rebón, N. Canosa, R. Rossignoli, Phys. Rev. A 89, 042312 (2014)

    Article  Google Scholar 

  10. F. Cannata, M.V. Ioffe, D.N. Nishnianidze, J. Math. Phys. 51, 022108 (2010)

    Article  Google Scholar 

  11. J.-Q. Li, Y.-G. Miao, Phys. Rev. A 85, 042110 (2012)

    Article  Google Scholar 

  12. F.M. Fernández, J. Garcia, J. Math. Phys. 55, 042107 (2014). arXiv:1308.6179v2 [quant-ph]

    Article  Google Scholar 

  13. A. Beygi, S.P. Klevansky, C.M. Bender, Phys. Rev. A 91, 062101 (2015)

    Article  Google Scholar 

  14. Y.-G. Miao, Z.-M. Xu, Phys. Lett. A 380, 1805 (2016)

    Article  CAS  Google Scholar 

  15. R. Rossignoli, A.M. Kowalski, Phys. Rev. A 72, 032101 (2005)

    Article  Google Scholar 

  16. R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Wiley, New York, 1974)

    Book  Google Scholar 

  17. F.M. Fernández, E.A. Castro, Algebraic Methods in Quantum Chemistry and Physics (CRC, Boca Raton, 1996)

    Google Scholar 

  18. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, New York, 1977)

    Google Scholar 

  19. E. Wigner, J. Math. Phys. 1, 409 (1960)

    Article  Google Scholar 

  20. W. Pauli, Rev. Mod. Phys. 15, 175 (1943)

    Article  Google Scholar 

  21. F.G. Scholtz, H.B. Geyer, F.J.W. Hahne, Ann. Phys. 213, 74 (1992)

    Article  Google Scholar 

  22. A. Mostafazadeh, J. Math. Phys. 43, 205 (2002)

    Article  Google Scholar 

  23. A. Mostafazadeh, J. Math. Phys. 43, 2814 (2002)

    Article  Google Scholar 

  24. A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002)

    Article  Google Scholar 

  25. E. Calliceti, S. Graffi, M. Hitrik, J. Sjöstrand, J. Phys. A 45, 444007 (2012)

    Article  Google Scholar 

  26. W.D. Heiss, A.L. Sannino, J. Phys. A 23, 1167 (1990)

    Article  Google Scholar 

  27. W.D. Heiss, Phys. Rev. E 61, 929 (2000)

    Article  CAS  Google Scholar 

  28. W.D. Heiss, H.L. Harney, Eur. Phys. J. D 17, 149 (2001)

    Article  CAS  Google Scholar 

  29. W.D. Heiss, Czech. J. Phys. 54, 1091 (2004)

    Article  Google Scholar 

  30. J. Yang, Opt. Lett. 39, 1133 (2014)

    Article  Google Scholar 

  31. F.M. Fernández, Generalization of parity-time and partial parity-time symmetry. arXiv:1507.08850 [quant-ph]

  32. F.M. Fernández, J. Garcia, Ann. Phys. 342, 195 (2014). arXiv:1309.0808 [quant-ph]

    Article  Google Scholar 

  33. P. Amore, F.M. Fernández, J. Garcia, Ann. Phys. 353, 238 (2014). arXiv:1409.2672 [quant-ph]

    Article  Google Scholar 

  34. P. Amore, F.M. Fernández, J. Garcia, Ann. Phys. 350, 533 (2014). arXiv:1405.5234 [quant-ph]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco M. Fernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this “Appendix” we derive some additional results that may be useful for future applications of the algebraic method.

For every eigenvalue \(\lambda _{i}\) we construct the operator

$$\begin{aligned} Z_{i}=\sum _{j=1}^{2K}c_{ij}O_{j}. \end{aligned}$$
(71)

For convenience we label the eigenvalues in such a way that \(\lambda _{j}=-\lambda _{2K-j+1}\), \(j=1,2,\ldots ,K\), and when they are real we organize them in the following way:

$$\begin{aligned} \lambda _{1}<\lambda _{2}<\cdots<\lambda _{K}<0<\lambda _{K+1}<\cdots <\lambda _{2K}. \end{aligned}$$
(72)

If we take into account that \([H,Z_{i}Z_{j}]=\left( \lambda _{i}+\lambda _{j}\right) Z_{i}Z_{j}\) then we conclude that

$$\begin{aligned}{}[H,[Z_{i},Z_{j}]]=\left( \lambda _{i}+\lambda _{j}\right) [Z_{i},Z_{j}]=0, \end{aligned}$$
(73)

which tells us that \(Z_{i}\) and \(Z_{j}\) commute when \(\lambda _{i}+\lambda _{j}\ne 0\). If \([Z_{j},Z_{2K-j+1}]=\sigma _{j}\ne 0\) for all \(j=1,2,\ldots ,K\) then we can write H in the following way

$$\begin{aligned} H=-\sum _{j=1}^{K}\frac{\lambda _{j}}{\sigma _{j}}Z_{2K-j+1}Z_{j}+E_{0}. \end{aligned}$$
(74)

If \(\psi _{0}\) is a vector in the Hilbert space where H is defined that satisfies

$$\begin{aligned} Z_{j}\psi _{0}=0,\;j=1,2,\ldots ,K, \end{aligned}$$
(75)

then \(H\psi _{0}=E_{0}\psi _{0}.\)

Consider the time-evolution of the dynamical variables

$$\begin{aligned} O_{j}(t)=e^{itH}O_{j}e^{-itH}, \end{aligned}$$
(76)

so that

$$\begin{aligned} \dot{O}_{j}(t)=ie^{itH}[H,O_{j}]e^{-itH}=i\sum _{k=1}^{2K}H_{kj}O_{k}(t). \end{aligned}$$
(77)

If we define the row vector \(\mathbf {O}(t)=\left( O_{1}(t)\,O_{2}(t)\,\ldots \,O_{2K}(t)\right)\) then we have the matrix differential equation \(\dot{\mathbf {O}}(t)=i\mathbf {O}(t)\mathbf {H}\) with the following solution:

$$\begin{aligned} \mathbf {O}(t)=\mathbf {O}e^{it\mathbf {H}},\;\mathbf {O}=\mathbf {O}(0). \end{aligned}$$
(78)

Since \(P(\mathbf {H})=0\) then

$$\begin{aligned} P\left( -i\frac{d}{dt}\right) \mathbf {O}(t)=\mathbf {O}P(\mathbf {H})e^{it \mathbf {H}}=0, \end{aligned}$$
(79)

gives us a differential equation of order 2K for the dynamical variables. Obviously, \(Z_{j}(t)=e^{it\lambda _{j}}Z_{j}\), \(j=1,2,\ldots ,2K\), satisfies this equation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, F.M. Algebraic treatment of non-Hermitian quadratic Hamiltonians. J Math Chem 58, 2094–2107 (2020). https://doi.org/10.1007/s10910-020-01165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01165-8

Keywords

Navigation