Skip to main content
Log in

Rubber blends: kinetic numerical model by rheometer experimental characterization

  • Review
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A robust kinetic numerical model for natural rubber NR–poly-butadiene PB blends vulcanized with sulfur is presented. For a preliminary experimental insight used then as benchmark, a 70% NR with 30% high-cis PB blend vulcanized in presence of sulfur and two accelerants (TBSS and DPG) in different concentrations is tested under standard vulcanization conditions (rheometer) at three different vulcanization temperatures, namely 150, 170 and 180 °C. The numerical model reproduces normalized experimental rheometer curves using a Han’s kinetic model for NR and a modification of the Han’s model proposed recently by the authors for PB. The model bases therefore on existing kinetic approaches that proved to be effective for NR and PB separately, but merging them linearly to cope with NR–PB peculiar reactions occurring in a blend. Han’s model depends on three rate constants, whereas the approach used for PB is characterized by four kinetic parameters. The linear interaction between PB and NR (with amount of rubber involved not a priori known) is again assumed ruled by a Han’s model. The mathematical approach proposed is therefore characterized by 10 rate constants plus an additional parameter represented by NR–PB concentration involved by the interaction. Such constants are estimated by standard best fitting against experimental data. Quite good match is found, showing that the procedure may be useful for practical purposes in all those cases where expensive experimental investigations are not possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.E. Railsback, W.T. Cooper, Cis-polybutadiene-natural rubber blends. Rubber Chem. Technol. 32(1), 308–320 (1959)

    Article  Google Scholar 

  2. K. Fujimoto, N. Yoshimiya, Blends of cis-1,4-polybutadiene with natural or styrene-butadiene rubber. Rubber Chem. Technol. 41(3), 669–677 (1968)

    Article  Google Scholar 

  3. M. Pazonyl, T. Dimitrov, Preparation and properties of polymer mixtures. Rubber Chem. Technol. 40(4), 1119 (1967)

    Article  Google Scholar 

  4. G. Milani, F. Milani, Comprehensive numerical model for the interpretation of cross-linking with peroxides and sulfur: chemical mechanisms and optimal vulcanization of real items. Rubber Chem. Technol. 85(4), 590 (2012)

    Article  CAS  Google Scholar 

  5. G. Milani, F. Milani, Kinetic model for S–TBBS–DPG NR vulcanization: extrapolation from S–TBBS and S–DPG experimental data. J. Theor. Comput. Chem. 15(8), 1–33 (2016). (paper no. 16500)

    Article  Google Scholar 

  6. G. Milani, F. Milani, Curing degree prediction for S–TBBS–DPG natural rubber by means of a simple numerical model accounting for reversion and linear interaction. Polym. Testing 52, 9–23 (2016)

    Article  CAS  Google Scholar 

  7. G. Milani, T. Hanel, R. Donetti, F. Milani, Combined experimental and numerical kinetic characterization of NR vulcanized with sulphur, N-terbutyl,2-benzothiazylsulphenamide and N,N-diphenyl guanidine. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43519. (paper no. 43519)

    Google Scholar 

  8. G. Milani, T. Hanel, F. Milani, R. Donetti, A closed form solution for the vulcanization prediction of NR cured with sulphur and different accelerators. J. Math. Chem. 53(4), 975–997 (2015). https://doi.org/10.1007/s10910-014-0456-4

    Article  CAS  Google Scholar 

  9. G. Milani, F. Milani, Closed form numerical approach for a kinetic interpretation of high-cis-polybutadiene rubber vulcanization. J. Math. Chem. 55(2), 552 (2017)

    Article  CAS  Google Scholar 

  10. D.W. Van Krevelen, Properties of polymers (Elsevier, New York, 1990), p. 102

    Google Scholar 

  11. M.L. Studebaker, J.R. Beatty, Chapter 9, in Science and technology of rubber, ed. by F.R. Eirich (Academic Press, New York, 1978)

    Google Scholar 

  12. M. Akiba, A.S. Hashim, Vulcanization and crosslinking in elastomers. Prog. Polym. Sci. 22, 475 (1997)

    Article  CAS  Google Scholar 

  13. A.S. Aprem, K. Joseph, S. Thomas, Recent developments in crosslinking of elastomers. Rubber Chem. Technol. 78(3), 458–488 (2005)

    Article  CAS  Google Scholar 

  14. B. Likozar, M. Krajnc, Modelling the vulcanization of rubber blends. Marcomol. Symp. 243, 104 (2006)

    Article  CAS  Google Scholar 

  15. A.I. Isayev, J.S. Deng, Non isothermal vulcanization of rubber compounds. Rubber Chem. Technol. 61, 340 (1988)

    Article  CAS  Google Scholar 

  16. M.R. Kamal, S. Sourour, Kinetics and thermal characterizationof thermoset cure. Polym. Eng. Sci. 13, 59 (1973)

    Article  CAS  Google Scholar 

  17. A.Y. Coran, Chemistry of the vulcanization and protection of elastomers: a review of the achievements. J. Appl. Polym. Sci. 87, 24–30 (2003)

    Article  CAS  Google Scholar 

  18. R. Ding, I. Leonov, A kinetic model for rubber accelerate vulcanization of a natural rubber compound. J. Appl. Polym. Sci. 61, 455 (1996)

    Article  CAS  Google Scholar 

  19. I.S. Han, C.B. Chung, Kang Sj, H.C. Chung, A kinetic model of reversion type cure for rubber compounds. Polymer (Korea) 22, 223 (1998)

    CAS  Google Scholar 

  20. G. Milani, F. Milani, Iterative robust numerical procedure for the determination of kinetic constants in Han’s model for NR cured with sulphur. J. Math. Chem. 52(2), 464 (2015)

    Article  Google Scholar 

  21. G. Milani, F. Milani, Parabola–hyperbola P–H kinetic model for sulphur vulcanization. Polym. Testing 58, 104–115 (2017)

    Article  CAS  Google Scholar 

  22. J. Nocedal, S. Wright, Numerical optimization (Springer, New York, 1999)

    Book  Google Scholar 

  23. X. Sun, A.I. Isayev, Cure kinetics study of unfilled and carbon black filled synthetic isoprene rubber. Rubber Chem. Technol. 82, 149 (2009)

    Article  CAS  Google Scholar 

  24. M. Szwarc, C.H. Leigh, Frequency factor in a series of similar unimolecular reactions. Nature 167, 486–487 (1951)

    Article  CAS  Google Scholar 

  25. G. Lente, A novel method to compute the time dependence of state distributions in the stochastic kinetic description of an autocatalytic system. Comput. Chem. Eng. (2017). https://doi.org/10.1016/j.compchemeng.2016.08.001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Milani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milani, G., Milani, F. Rubber blends: kinetic numerical model by rheometer experimental characterization. J Math Chem 56, 1520–1542 (2018). https://doi.org/10.1007/s10910-018-0887-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0887-4

Keywords

Navigation