Skip to main content
Log in

Partition distance in graphs

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

If G is a graph and \(\mathcal{P}\) is a partition of V(G), then the partition distance of G is the sum of the distance between all pairs of vertices that lie in the same part of \(\mathcal{P}\). This concept generalizes several metric concepts and is dual to the concept of the colored distance due to Dankelmann, Goddard, and Slater. It is proved that the partition distance of a graph can be obtained from the Wiener index of weighted quotient graphs induced by the transitive closure of the Djoković–Winkler relation as well as by any partition coarser than it. It is demonstrated that earlier results follow from the obtained theorems. Applying the main results, upper bounds on the partition distance of trees with prescribed order and radius are proved and corresponding extremal trees characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Arockiaraj, S.R.J. Kavitha, K. Balasubramanian, Vertex cut method for degree and distance-based topological indices and its applications to silicate networks. J. Math. Chem. 54, 1728–1747 (2016)

    Article  CAS  Google Scholar 

  2. K. Balakrishnan, B. Brešar, M. Changat, S. Klavžar, A. Vesel, P. Žigert, Equal opportunity networks, distance-balanced graphs, and Wiener game. Discrete Optim. 12, 150–154 (2014)

    Article  Google Scholar 

  3. Y.-H. Chen, X.D. Zhang, The terminal Wiener index of trees with diameter or maximum degree. Ars Combin. 120, 353–367 (2015)

    Google Scholar 

  4. P. Dankelmann, W. Goddard, P.J. Slater, Average distance in colored graphs. J. Graph Theory 38, 1–17 (2001)

    Article  Google Scholar 

  5. D.Ž. Djoković, Distance preserving subgraphs of hypercubes. J. Combin. Theory Ser. B 14, 263–267 (1973)

    Article  Google Scholar 

  6. R.C. Entringer, D.E. Jackson, D.A. Snyder, Distance in graphs. Czechoslov. Math. J. 26(101), 283–296 (1976)

    Google Scholar 

  7. M. Ghorbani, S. Klavžar, Modified Wiener index via canonical metric representation, and some fullerene patches. Ars Math. Contemp. 11, 247–254 (2016)

    Google Scholar 

  8. W. Goddard, C.S. Swart, C.H. Swart, On the graphs with maximum distance or \(k\)-diameter. Math. Slovaca 55, 131–139 (2005)

    Google Scholar 

  9. R.L. Graham, P.M. Winkler, On isometric embeddings of graphs. Trans. Am. Math. Soc. 288, 527–536 (1985)

    Article  Google Scholar 

  10. A. Graovac, T. Pisanski, On the Wiener index of a graph. J. Math. Chem. 8, 53–62 (1991)

    Article  Google Scholar 

  11. I. Gutman, B. Furtula, M. Petrović, Terminal Wiener index. J. Math. Chem. 46, 522–531 (2009)

    Article  CAS  Google Scholar 

  12. J. Hatzl, Median problems on wheels and cactus graphs. Computing 80, 377–393 (2007)

    Article  Google Scholar 

  13. M. Horváthová, On \((k, l)\)-radii of wheels. Australas. J. Combin. 40, 105–114 (2008)

    Google Scholar 

  14. B.L. Hulme, P.J. Slater, Minimean location of different facilities on a line network. SIAM J. Algebraic Discrete Methods 2, 411–415 (1981)

    Article  Google Scholar 

  15. A. Ilić, A. Ilić, D. Stevanović, On the Wiener index and Laplacian coefficients of graphs with given diameter or radius. MATCH Commun. Math. Comput. Chem. 63, 91–100 (2010)

    Google Scholar 

  16. A. Ilić, M. Ilić, Generalizations of Wiener polarity index and terminal Wiener index. Graphs Combin. 29, 1403–1416 (2013)

    Article  Google Scholar 

  17. W. Imrich, S. Klavžar, D.F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Product (A K Peters, Wellesley, 2008)

    Google Scholar 

  18. S. Klavžar, I. Gutman, Wiener number of vertex-weighted graphs and a chemical application. Discrete Appl. Math. 80, 73–81 (1997)

    Article  Google Scholar 

  19. S. Klavžar, On the canonical metric representation, average distance, and partial Hamming graphs. Eur. J. Combin. 27, 68–73 (2006)

    Article  Google Scholar 

  20. S. Klavžar, M.J. Nadjafi-Arani, Wiener index in weighted graphs via unification of \(\Theta ^\ast \)-classes. Eur. J. Combin. 36, 71–76 (2014)

    Article  Google Scholar 

  21. S. Klavžar, M.J. Nadjafi-Arani, Cut method: update on recent developments and equivalence of independent approaches. Curr. Org. Chem. 19, 348–358 (2015)

    Article  Google Scholar 

  22. H. Kurata, R.B. Bapat, Moore–Penrose inverse of a Euclidean distance matrix. Linear Algebra Appl. 472, 106–117 (2015)

    Article  Google Scholar 

  23. D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis (Kluwer, Dordrecht, 1993)

    Book  Google Scholar 

  24. S. Mukwembi, Average distance, independence number, and spanning trees. J. Graph Theory 76, 194–199 (2014)

    Article  Google Scholar 

  25. P. Winkler, Isometric embeddings in products of complete graphs. Discrete Appl. Math. 7, 221–225 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Nadjafi-Arani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klavžar, S., Nadjafi-Arani, M.J. Partition distance in graphs. J Math Chem 56, 69–80 (2018). https://doi.org/10.1007/s10910-017-0781-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-017-0781-5

Keywords

Mathematics Subject Classification

Navigation