Skip to main content

Advertisement

Log in

Mechanical degradation of electrode materials within single particle model in Li-ion batteries for electric vehicles

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Mechanical degradation of electrode materials, in the form of particle cracking and fragmentation, disintegration, fracturing, and loss in contact between current collectors and the active electrode materials, can affect or deteriorate the performance of Li-ion batteries dramatically and even lead to the battery failure in electric vehicle. This paper firstly built a single particle model (SPM) based upon kinetics of electrochemical reactions. Then the Li-ion concentration, evolution of diffusion induced stresses within the SPM under potentiostatic or galvanostatic operating conditions were analyzed by utilizing a mathematical method. Next, evolution of stresses or strains in the SPM, at the core of relates with mechanical degradation of electrode materials, are elaborated in detail. Finally, surface and morphology of the electrodes dismantled from fresh and degraded cells after galvanostatic charge/discharge cycling have been analyzed to verify the hypothesis aforementioned by observing scanning electron microscopy and analyzing X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Wang, H. He, Y. Zhang, H. Mu, A comparative study on the applicability of ultracapacitor models for electric vehicles under different temperatures. Appl. Energy 196, 268–278 (2017)

    Article  Google Scholar 

  2. F. Sun, R. Xiong, A novel dual-scale cell state-of-charge of estimate approach for series-connected battery pack used in electric vehicles. J. Power Sources 274, 582–594 (2015)

    Article  CAS  Google Scholar 

  3. F. Sun, R. Xiong, H. He, A systematic state-of-charge of estimate framework for multi-cell battery pack in electric vehicles using bias correction technique. Appl. Energy 162, 1399–1409 (2016)

    Article  Google Scholar 

  4. Y.-T. Cheng, M.W. Verbrugge, Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453–460 (2009)

    Article  CAS  Google Scholar 

  5. B. Stiaszny, J.C. Ziegler, E.E. Krauß, M. Zhang, J.P. Schmidt, E. Ivers-Tiffée, Electrochemical characterization and post-mortem analysis of aged \(\text{ LiMn }_{2}\text{ O }_{4}\)–NMC/graphite lithium ion batteries part II: calendar aging. J. Power Sources 258, 61–75 (2014)

    Article  CAS  Google Scholar 

  6. J. Christensen, J. Newman, Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006)

    Article  CAS  Google Scholar 

  7. M. Doyle, T.F. Fuller, J. Newman, Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140(6), 1526–1533 (1993)

    Article  CAS  Google Scholar 

  8. R. Deshpande, Y.-T. Cheng, M.W. Verbrugge, Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195, 5081–5088 (2010)

    Article  CAS  Google Scholar 

  9. R. Deshpande, Y. Qi, Y.-T. Cheng, Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157(8), A967–A971 (2010)

    Article  CAS  Google Scholar 

  10. R. Deshpande, Y.-T. Cheng, M.W. Verbrugge, A. Timmons, Diffusion induced stresses and strain energy in a phase transforming spherical electrode particle. J. Electrochem Soc. 158, A718–A724 (2011)

    Article  CAS  Google Scholar 

  11. R.A. Huggins, W.D. Nix, Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000)

    Article  CAS  Google Scholar 

  12. K.E. Aifantis, J.P. Dempsey, Stable crack growth in nanostructured Li-batteries. J. Power Sources 143(1), 203–211 (2005)

    Article  CAS  Google Scholar 

  13. M. Ebner, F. Marone, M. Stampanoni, V. Wood, Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–719 (2015)

    Article  Google Scholar 

  14. F. Wu, N. Li, Y.F. Su, H.F. Shou, L.Y. Bao et al., Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv. Mater. 25, 3722–3726 (2013)

    Article  CAS  Google Scholar 

  15. S.J. Harris, R. Deshpande, Y. Qi, I. Dutta, Y.-T. Cheng, Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress. J. Mater. Res. 25, 1433–1440 (2010)

    Article  CAS  Google Scholar 

  16. W.H. Woodford, Y.-M. Chiang, W.C. Carter, “Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–A1059 (2010)

    Article  CAS  Google Scholar 

  17. L. Chen, Y. Su, S. Chen, N. Li, L. Bao et al., Hierarchical \(\text{ Li }_{1.2}\) \(\text{ Ni }_{0.2}\) \(\text{ Mn }_{ 0.6}\) \(\text{ O }_{2}\) nanoplates with exposed 010 planes as high-performance cathode material for lithium-ion batteries. Adv. Mater. 26, 6756–6760 (2014)

    Article  CAS  Google Scholar 

  18. R.T. Purkayastha, R.M. McMeeking, An integrated 2-D model of a lithium ion battery: the effect of material parameters and morphology on storage particle stress. Comput. Mech. 50, 209–227 (2012)

    Article  Google Scholar 

  19. F. Wu, N. Li, Y. Su, L. Zhang, L. Bao, Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced li-ion batteries. Nano Lett. 14, A366–A380 (2014)

    Google Scholar 

  20. Y.-T. Cheng, M.W. Verbrugge, Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157, A508–A516 (2010)

    Article  CAS  Google Scholar 

  21. Y.-T. Cheng, M.W. Verbrugge, Application of Hasselman’s crack propagation model to insertion electrodes. Electrochem. Solid State Lett. 13, A128–A131 (2010)

    Article  CAS  Google Scholar 

  22. B.S. Haran, B.N. Popov, R.E. White, Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy. J. Power Sources 75, 56–63 (1998)

    Article  CAS  Google Scholar 

  23. E. Tatsukawa, K. Tamura, Activity correction on electrochemical reaction and diffusion in lithium intercalation electrodes for discharge/charge simulation by single particle model. Electrochim. Acta. 115, 75–85 (2014)

    Article  CAS  Google Scholar 

  24. W. Fang, O.J. Kwon, C.-Y. Wang, Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell. Int. J. Energy Res. 34, 107–115 (2010)

    Article  CAS  Google Scholar 

  25. A.P. Schmidt, M. Bitzer, Á.W. Imre, L. Guzzella, Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell. J. Power Sources 195, 5071–5080 (2010)

    Article  CAS  Google Scholar 

  26. K.A. Smith, C.D. Rahn, C.-Y. Wang, Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries. IEEE Trans. Control Syst. Technol. 18, 654–663 (2010)

    Article  Google Scholar 

  27. Y. Qi, H. Guo, L.G. Hector Jr., A. Timmons, Threefold increase in the Young’s modulus of graphite negative electrode during lithium intercalation. J. Electrochem. Soc. 157(5), A558–A566 (2010)

    Article  CAS  Google Scholar 

  28. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd edn. (McGraw-Hill, New York, 1970)

    Google Scholar 

  29. J. Crank, The Mathematics of Diffusion, 2nd edn. (Clarendon, Oxford, 1956)

    Google Scholar 

  30. A.V. Shobukhov, D.S. Maximov, Exact steady state solutions in symmetrical Nernst–Planck–Poisson electrodiffusive models. J. Math. Chem. 52, 1338–1349 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sichuan Provincial Department of Education (17ZB0305); Zigong Key Science and Technology Project (2016HG07); Sichuan Provincial Key Lab of Process Equipment and Control Foundation (GK201603); and the Sichuan Application Foundation Projects (Grant No. 2016JY0098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, A., Hu, G. & Liu, M. Mechanical degradation of electrode materials within single particle model in Li-ion batteries for electric vehicles. J Math Chem 55, 1903–1915 (2017). https://doi.org/10.1007/s10910-017-0770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-017-0770-8

Keywords

Mathematics Subject Classification

Navigation