Skip to main content
Log in

Dynamic hysteresis in the velocity and dissipation of stochastic Michaelis–Menten kinetics

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we have studied a single molecule enzyme catalysis reaction in presence of oscillatory substrate concentration. The stochastic kinetics is modelled in terms of a chemical master equation. Depending on the oscillation frequency, hysteresis can occur in the system which is dynamic in nature. The time-dependent driving keeps the system out-of-equilibrium associated with dissipation. The interplay between the timescales of the system kinetics and the external driving necessitates the splitting of the total entropy production rate into adiabatic and nonadiabatic contributions. Analyses of these quantities give insights into the various balance conditions of the reaction fluxes and their roles in governing the nonequilibrium thermodynamics of the system. Interestingly, the net velocity of catalysis and the dissipation along with its various parts are found to exhibit hysteresis that vanish in the low and high-frequency ranges of substrate oscillation. However, the average (over a period) velocity as well as the average dissipation show hyperbolic increase with frequency to saturation. We have proposed an experimental protocol to realize such features using periodic stepwise injection of substrate at specified rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.P. Lu, L. Xun, X.S. Xie, Science 282, 1877 (1998)

    Article  CAS  Google Scholar 

  2. H. Wang, G. Oster, Nature 396, 279 (1998)

    Article  CAS  Google Scholar 

  3. G. Hummer, A. Szabo, Proc. Natl. Acad. Sci. USA 98, 3658 (2001)

    Article  CAS  Google Scholar 

  4. F. Ritort, C. Bustamante, I. Tinoco Jr, Proc. Natl. Acad. Sci. USA 99, 13544 (2002)

    Article  CAS  Google Scholar 

  5. D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco Jr, C. Bustamante, Nature 437, 231 (2005)

    Article  CAS  Google Scholar 

  6. F. Ritort, Adv. Chem. Phys. 137, 31 (2008)

    CAS  Google Scholar 

  7. C. Jarzynski, Nat. Phys. 7, 591 (2011)

    Article  CAS  Google Scholar 

  8. T. Xia, N. Li, X. Fang, Annu. Rev. Phys. Chem. 64, 459 (2013)

    Article  CAS  Google Scholar 

  9. H. Qian, E.L. Elson, Biophys. Chem. 101–102, 565 (2002)

    Article  Google Scholar 

  10. S.C. Kou, B.J. Cherayil, W. Min, B.P. English, X.S. Xie, J. Phys. Chem. B 109, 19068 (2005)

    Article  CAS  Google Scholar 

  11. R. Grima, J. Chem. Phys. 133, 035101 (2010)

    Article  CAS  Google Scholar 

  12. A.F. Bartholomay, Biochemistry 1, 223 (1962)

    Article  CAS  Google Scholar 

  13. D.A. McQuarrie, J. Chem. Phys. 38, 433 (1963)

    Article  CAS  Google Scholar 

  14. D.A. McQuarrie, C.J. Jachimowski, M.E. Russell, J. Chem. Phys. 40, 2914 (1964)

    Article  CAS  Google Scholar 

  15. D.T. Gillespie, Phys. A 188, 404 (1992)

    Article  CAS  Google Scholar 

  16. B. Das, G. Gangopadhyay, J. Chem. Phys. 132, 135102 (2010)

    Article  Google Scholar 

  17. T.G. Kurtz, J. Chem. Phys. 57, 2976 (1972)

    Article  CAS  Google Scholar 

  18. P. Aranyi, J. Toth, Acta Biochim. Biophys. Acad. Sci. Hung. 12, 375 (1977)

    CAS  Google Scholar 

  19. H. Qian, Annu. Rev. Phys. Chem. 58, 113 (2007)

    Article  CAS  Google Scholar 

  20. R. Grima, J. Chem. Phys. 132, 185102 (2010)

    Article  Google Scholar 

  21. A. Cornish-Bowden, Fundamentals of Enzyme Kinetics (Portland Press, London, 2004)

    Google Scholar 

  22. K. A. Johnson, R. S. Goody, Biochem. 50, 8264 (2011) (Translation of the 1913 Michaelis–Menten Paper)

  23. B.P. English, W. Min, A.M. van Oijen, K.T. Lee, G. Luo, H. Sun, B.J. Cherayil, S.C. Kou, X.S. Xie, Nat. Chem. Biol. 2, 87 (2006)

    Article  CAS  Google Scholar 

  24. C.Y. Mou, J.-L. Luo, G. Nicolis, J. Chem. Phys. 84, 7011 (1986)

    Article  CAS  Google Scholar 

  25. K.L.C. Hunt, P.M. Hunt, J. Ross, Phys. A 147, 48 (1987)

    Article  Google Scholar 

  26. P. Gaspard, J. Chem. Phys. 120, 8898 (2004)

    Article  CAS  Google Scholar 

  27. T. Schmiedl, U. Seifert, J. Chem. Phys. 126, 044101 (2007)

    Article  Google Scholar 

  28. J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976)

    Article  Google Scholar 

  29. M. Esposito, C. Van den Broeck, Phys. Rev. Lett. 104, 090601 (2010)

    Article  Google Scholar 

  30. H. Ge, H. Qian, Phys. Rev. E 81, 051133 (2010)

    Article  Google Scholar 

  31. K. Banerjee, J. Math. Chem. 52, 2259 (2014)

    Article  CAS  Google Scholar 

  32. R.K.P. Zia, B. Schmittmann, J. Phys. A 39, 407 (2006)

    Article  Google Scholar 

  33. H. Ge, M. Qian, H. Qian, Phys. Rep. 510, 87 (2012)

    Article  CAS  Google Scholar 

  34. L. Jiu-li, C. Van den Broeck, G. Nicolis, Z. Phys. B 56, 165 (1984)

    Article  Google Scholar 

  35. W. Min, L. Jiang, J. Yu, S.C. Kou, H. Qian, X.S. Xie, Nano Lett. 5, 2373 (2005)

    Article  CAS  Google Scholar 

  36. K. Banerjee, K. Bhattacharyya, Chem. Phys. 438, 1 (2014)

    Article  CAS  Google Scholar 

  37. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962)

    Google Scholar 

  38. B.K. Chakrabarty, M. Acharyya, Rev. Mod. Phys. 71, 847 (1999)

    Article  Google Scholar 

  39. M. Das, D. Mondal, D.S. Ray, J. Chem. Phys. 136, 114104 (2012)

    Article  Google Scholar 

  40. M.A. Pustovoit, A.M. Berezhkovskii, S.M. Bezrukov, J. Chem. Phys. 125, 194907 (2006)

    Article  CAS  Google Scholar 

  41. M. Esposito, C. Van den Broeck, Phys. Rev. E 82, 011143 (2010)

    Article  Google Scholar 

  42. H. Ge, M. Qian, H. Qian, Phys. Rep. 510, 87 (2012)

    Article  CAS  Google Scholar 

  43. D. Kondepudi, I. Prigogine, Modern Thermodynamics (from Engines to Dissipative Structures) (Wiley, New York, 2002)

    Google Scholar 

Download references

Acknowledgments

K.B. acknowledges the University Grants Commission (UGC), India for Dr. D. S. Kothari Fellowship and Prof. K. Bhattacharyya for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinshuk Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, K. Dynamic hysteresis in the velocity and dissipation of stochastic Michaelis–Menten kinetics. J Math Chem 53, 1412–1425 (2015). https://doi.org/10.1007/s10910-015-0496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0496-4

Keywords

Navigation