Skip to main content
Log in

Analysis of self-consistent extended Hückel theory (SC-EHT): a new look at the old method

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We present an extensive analysis of the self-consistent extended Hückel theory (SC-EHT) and discuss the possibilities of constructing accurate and efficient semiempirical methods on its basis. We describe the mapping approach to derive a self-consistency correction to the effective 1-electron Hamiltonian (Fock) operator that is utilized in electronic structure calculations and that variationally minimizes the total energy in the SC-EHT method. We show that the SC-EHT Hamiltonian can play the role of the 1-electron operator by definition, in which case no self-consistency correction is needed. Then, the SC-EHT method can be derived from the Hartree–Fock theory by approximation of the Fock matrix. Therefore, the SC-EHT based methods have rigorous foundations that may be utilized to develop a family of successively accurate model Hamiltonians. We analyze the underlying approximation and discuss it in the light of existing formulations of the EHT method. We indicate two major deficiencies of the existing formulations of the EHT method—neglect of exchange integrals and incorrect asymptotic behavior of the Coulomb integrals. The SC-EHT is compared to the charge equilibration scheme and to the DFTB family of approximations. We show that an improved version of the SC-EHT method can be connected to both of them, indicating relation of the SC-EHT derived approximations to the fundamental DFT origins and their potential for efficient computations on large-scale systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R. Hoffmann, J. Chem. Phys. 39, 1397 (1963)

    Article  CAS  Google Scholar 

  2. J.H. Ammeter, H.B. Bürgi, J.C. Thibeault, R. Hoffmann, J. Am. Chem. Soc. 100, 3686 (1978)

    Article  CAS  Google Scholar 

  3. R. Hoffmann, Rev. Mod. Phys. 60, 601 (1988)

    Article  CAS  Google Scholar 

  4. R. Hoffmann, J. Chem. Phys. 40, 2745 (1964)

    Article  CAS  Google Scholar 

  5. R. Hoffmann, J. Chem. Phys. 40, 2474 (1964)

    Article  CAS  Google Scholar 

  6. R. Hoffmann, J. Chem. Phys. 40, 2480 (1964)

    Article  CAS  Google Scholar 

  7. J. Cerda, F. Soria, Phys. Rev. B 61, 7965 (2000)

    Article  CAS  Google Scholar 

  8. S. Larsson, P. Pyykkö, Chem. Phys. 101, 355 (1986)

    Article  CAS  Google Scholar 

  9. A.V. Akimov, O.V. Prezhdo, J. Phys. Chem. Lett. 4, 3857 (2013)

    Article  CAS  Google Scholar 

  10. L.G.C. Rego, V.S. Batista, J. Am. Chem. Soc. 125, 7989 (2003)

    Article  CAS  Google Scholar 

  11. S.G. Abuabara, L.G.C. Rego, V.S. Batista, J. Am. Chem. Soc. 127, 18234 (2005)

    Article  CAS  Google Scholar 

  12. S.G. Abuabara, C.W. Cady, J.B. Baxter, C.A. Schmuttenmaer, R.H. Crabtree, G.W. Brudvig, V.S. Batista, J. Phys. Chem. C 111, 11982 (2007)

    Article  CAS  Google Scholar 

  13. W.R. McNamara, R.C. Snoeberger, G. Li, J.M. Schleicher, C.W. Cady, M. Poyatos, C.A. Schmuttenmaer, R.H. Crabtree, G.W. Brudvig, V.S. Batista, J. Am. Chem. Soc. 130, 14329 (2008)

    Article  CAS  Google Scholar 

  14. E. Jakubikova, R.C. Snoeberger III, V.S. Batista, R.L. Martin, E.R. Batista, J. Phys. Chem. A 113, 12532 (2009)

    Article  CAS  Google Scholar 

  15. D.N. Bowman, J.H. Blew, T. Tsuchiya, E. Jakubikova, Inorg. Chem. 52, 8621 (2013)

    Article  CAS  Google Scholar 

  16. L.G.C. Rego, B.C. Hames, K.T. Mazon, J.-O. Joswig, J. Phys. Chem. C 118, 126 (2014)

    Article  CAS  Google Scholar 

  17. D. Kienle, J.I. Cerda, A.W. Ghosh, J. Appl. Phys. 100, 043714 (2006)

    Article  Google Scholar 

  18. F. Zahid, M. Paulsson, E. Polizzi, A.W. Ghosh, L. Siddiqui, S. Datta, J. Chem. Phys. 123, 064707 (2005)

    Article  CAS  Google Scholar 

  19. E. Suhendi, R. Syariati, F.A. Noor, N. Kurniasih, Khairurrijal, AIP Conf. Proc. 1589, 91 (2014)

    Article  CAS  Google Scholar 

  20. B. Akdim, R. Pachter, S.S. Kim, R.R. Naik, T.R. Walsh, S. Trohalaki, G. Hong, Z. Kuang, B.L. Farmer, ACS Appl. Mater. Interfaces 5, 7470 (2013)

    Article  CAS  Google Scholar 

  21. F. Pop, P. Auban-Senzier, A. Frąckowiak, K. Ptaszyński, I. Olejniczak, J.D. Wallis, E. Canadell, N. Avarvari, J. Am. Chem. Soc. 135, 17176 (2013)

    Article  CAS  Google Scholar 

  22. X. Zhang, J. Dong, Y. Wang, L. Li, H. Li, J. Phys. Chem. C 117, 12958 (2013)

    Article  CAS  Google Scholar 

  23. F. Wrobel, M.C. Kemei, S. Derakhshan, Inorg. Chem. 52, 2671 (2013)

    Article  CAS  Google Scholar 

  24. R.A.L. Silva, A.I.S. Neves, E.B. Lopes, I.C. Santos, J.T. Coutinho, L.C.J. Pereira, C. Rovira, M. Almeida, D. Belo, Inorg. Chem. 52, 5300 (2013)

    Article  CAS  Google Scholar 

  25. V.J. Yannello, B.J. Kilduff, D.C. Fredrickson, Inorg. Chem. 53, 2730 (2014)

    Article  CAS  Google Scholar 

  26. S. Gomez-Coca, E. Cremades, N. Aliaga-Alcalde, E. Ruiz, J. Am. Chem. Soc. 135, 7010 (2013)

    Article  CAS  Google Scholar 

  27. A.A. Voityuk, J. Chem. Theory Comput. 2, 1038 (2006)

    Article  CAS  Google Scholar 

  28. A.A. Voityuk, J. Chem. Theory Comput. 4, 1877 (2008)

    Article  CAS  Google Scholar 

  29. Y. Sui, R. Glaser, U. Sarkar, K. Gates, J. Chem. Theory Comput. 3, 1091 (2007)

    Article  CAS  Google Scholar 

  30. R.M. Tromer, J.A. Freire, J. Phys. Chem. A 117, 14276 (2013)

    Article  CAS  Google Scholar 

  31. L. Rincón, A. Hasmy, C.A. Gonzalez, R. Almeida, J. Chem. Phys. 129, 044107 (2008)

    Article  Google Scholar 

  32. L. Rincón, C.A. Gonzalez, J. Phys. Chem. C 114, 20734 (2010)

    Article  Google Scholar 

  33. M. Kitamura, K. Inoue, H. Chen, Mater. Chem. Phys. 62, 122 (2000)

    Article  CAS  Google Scholar 

  34. G. Calzaferri, L. Forss, I. Kamber, J. Phys. Chem. 93, 5366 (1989)

    Article  CAS  Google Scholar 

  35. A.B. Anderson, R. Hoffmann, J. Chem. Phys. 60, 4271 (1974)

    Article  CAS  Google Scholar 

  36. M. Nishida, Surf. Sci. 72, 589 (1978)

    Article  CAS  Google Scholar 

  37. A.K. Mukhopadhyay, N.G. Mukherjee, Int. J. Quantum Chem. 19, 515 (1981)

    Article  CAS  Google Scholar 

  38. Y. Wang, P. Nordlander, N.H. Tolk, J. Chem. Phys. 89, 4163 (1988)

    Article  CAS  Google Scholar 

  39. A.B. Anderson, J. Chem. Phys. 62, 1187 (1975)

    Article  CAS  Google Scholar 

  40. R. Carbo, J.M. Fornos, J.A. Hernandez, F. Sanz, Int. J. Quantum Chem. 11, 271 (1977)

    Article  CAS  Google Scholar 

  41. K.B. Hathaway, J.A. Krumhansl, J. Chem. Phys. 63, 4313 (1975)

    Article  CAS  Google Scholar 

  42. B.L. Kalman, J. Chem. Phys. 59, 5184 (1973)

    Article  CAS  Google Scholar 

  43. F.E. Harris, J. Chem. Phys. 48, 4027 (1968)

    Article  Google Scholar 

  44. J. Harris, Phys. Rev. B 31, 1770 (1985)

    Article  CAS  Google Scholar 

  45. M.A. Iron, A. Heyden, G. Staszewska, D.G. Truhlar, J. Chem. Theory Comput. 4, 804 (2008)

    Article  CAS  Google Scholar 

  46. S.P. Gupta, B. Krishna, J. Am. Chem. Soc. 92, 7247 (1970)

    Article  CAS  Google Scholar 

  47. J.E. Sanhueza, O. Tapia, W.G. Laidlaw, M. Trsic, J. Chem. Phys. 70, 3096 (1979)

    Article  CAS  Google Scholar 

  48. M. Elstner, T. Frauenheim, E. Kaxiras, G. Seifert, S. Suhai, Phys. Status Solidi B 217, 357 (2000)

    Article  CAS  Google Scholar 

  49. M. Elstner, Theor. Chem. Acc. 116, 316 (2006)

    Article  CAS  Google Scholar 

  50. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998)

    Article  CAS  Google Scholar 

  51. M. Gaus, Q. Cui, M. Elstner, J. Chem. Theory Comput. 7, 931 (2011)

    Article  CAS  Google Scholar 

  52. M.J. Dewar, W. Thiel, J. Am. Chem. Soc. 99, 4899 (1977)

    Article  CAS  Google Scholar 

  53. M.J. Dewar, W. Thiel, J. Am. Chem. Soc. 99, 4907 (1977)

    Article  CAS  Google Scholar 

  54. M.C. Zerner, G.H. Loew, R.F. Kirchner, U.T. Mueller-Westerhoff, J. Am. Chem. Soc. 102, 589 (1980)

    Article  CAS  Google Scholar 

  55. M.A. Thompson, M.C. Zerner, J. Am. Chem. Soc. 113, 8210 (1991)

    Article  CAS  Google Scholar 

  56. E. Amouyal, M. Mouallem-Bahout, G. Calzaferri, J. Phys. Chem. 95, 7641 (1991)

    Article  CAS  Google Scholar 

  57. E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963)

    Article  CAS  Google Scholar 

  58. E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974)

    Article  CAS  Google Scholar 

  59. A.D. McLean, R.S. McLean, At. Data Nucl. Data Tables 26, 197 (1981)

    Article  CAS  Google Scholar 

  60. E.O. Steinborn, K. Ruedenberg, Int. J. Quantum Chem. 6, 413 (1972)

    Article  CAS  Google Scholar 

  61. H.W. Jones, Int. J. Quantum Chem. 21, 1079 (1982)

    Article  CAS  Google Scholar 

  62. M. Wolfsberg, L. Helmholz, J. Chem. Phys. 20, 837 (1952)

    Article  CAS  Google Scholar 

  63. L.C. Cusachs, J. Chem. Phys. 43, S157 (1965)

    Article  CAS  Google Scholar 

  64. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)

    Article  CAS  Google Scholar 

  65. R. Pariser, R.G. Parr, J. Chem. Phys. 21, 466 (1953)

    Article  CAS  Google Scholar 

  66. R. Pariser, R.G. Parr, J. Chem. Phys. 21, 767 (1953)

    Article  CAS  Google Scholar 

  67. J.A. Pople, Trans. Faraday Soc. 49, 1375 (1953)

    Article  CAS  Google Scholar 

  68. J.A. Pople, D.P. Santry, G.A. Segal, J. Chem. Phys. 43, S129 (1965)

    Article  CAS  Google Scholar 

  69. J.A. Pople, G.A. Segal, J. Chem. Phys. 43, S136 (1965)

    Article  CAS  Google Scholar 

  70. J.A. Pople, J. Chem. Phys. 44, 3289 (1966)

    Article  CAS  Google Scholar 

  71. J.A. Pople, J. Chem. Phys. 47, 2026 (1967)

    Article  CAS  Google Scholar 

  72. A. Warshel, M. Levitt, J. Mol. Biol. 103, 227 (1976)

    Article  CAS  Google Scholar 

  73. R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B 37, 10159 (1988)

    Article  Google Scholar 

  74. F. Gygi, A. Baldereschi, Phys. Rev. Lett. 62, 2160 (1989)

    Article  CAS  Google Scholar 

  75. K. Ohno, Theor. Chem. Acc. 2, 219 (1964)

    Article  CAS  Google Scholar 

  76. G. Klopman, J. Am. Chem. Soc. 86, 4550 (1964)

    Article  CAS  Google Scholar 

  77. N. Mataga, S. Taniguchi, H. Chosrowjan, A. Osuka, K. Kurotobi, Chem. Phys. Lett. 403, 163 (2005)

    Article  CAS  Google Scholar 

  78. A.K. Rappe, W.A. Goddard, J. Phys. Chem. 95, 3358 (1991)

    Article  CAS  Google Scholar 

  79. P.-O. Löwdin, Phys. Rev. 97, 1474 (1955)

    Article  Google Scholar 

  80. P.-O. Löwdin, Phys. Rev. 97, 1490 (1955)

    Article  Google Scholar 

  81. P.-O. Löwdin, Phys. Rev. 97, 1509 (1955)

    Article  Google Scholar 

  82. I. Rossi, D.G. Truhlar, Chem. Phys. Lett. 233, 231 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Science Foundation, Grant CHE-1035196.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Akimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimov, A.V., Prezhdo, O.V. Analysis of self-consistent extended Hückel theory (SC-EHT): a new look at the old method. J Math Chem 53, 528–550 (2015). https://doi.org/10.1007/s10910-014-0433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0433-y

Keywords

Navigation