Skip to main content
Log in

Recent Developments for the Terahertz Photon Detector System: Detector and Cryogenics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent developments on the detector and the cryogenics for the terahertz photon detector system are discussed. The detector has been redesigned for improved performance, which exhibited optical efficiency of 6% at 530 GHz. Cryogenics for the detector system has been newly developed which employs a pulse-tube cooler with two originally developed compact 4He sorption fridges. Initial experiments demonstrated continuous cooling by altering operation of two sorption fridges, supported by a pulse-tube cooler with cooling power of 0.4 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Ezawa, H. Matsuo, M. Ukibe, G. Fujii, S. Shiki, J. Low Temp. Phys. 200, 226–232 (2020). https://doi.org/10.1007/s10909-020-02513-3

    Article  ADS  Google Scholar 

  2. H. Ezawa, H. Matsuo, M. Ukibe, G. Fujii, S. Shiki, J. Low Temp. Phys. 184, 244–249 (2016). https://doi.org/10.1007/s10909-015-1465-9

    Article  ADS  Google Scholar 

  3. H. Matsuo, H. Ezawa, A. Niwa, T. Koseki, R. Enohi, N. Okada, in Proceedings of 32nd IEEE International Symposium on Space Terahertz Technology (ISSTT 2022) (2022)

  4. T. Suzuki, P. Khosropanah, M.L. Ridder, R.A. Hijmering, J.R. Gao, H. Akamatsu, L. Gottardi, J. van der Kuur, B.D. Jackson, J. Low Temp. Phys. 184, 52–59 (2016). https://doi.org/10.1007/s10909-015-1401-z

  5. R.M.J. Janssen, J.J.A. Baselmans, A. Endo, L. Ferrari, S.J.C. Yates, A.M. Baryshev, T.M. Klapwijk, Appl. Phys. Lett. 103, 203503 (2013). https://doi.org/10.1063/1.4829657

    Article  ADS  Google Scholar 

  6. P.M. Echternach, B.J. Pepper, T. Reck, C.M. Bradford, Nat. Astron. 2, 90–97 (2018). https://doi.org/10.1038/s41550-017-0294-y

    Article  ADS  Google Scholar 

  7. H. Ezawa, H. Matsuo, M. Ukibe, G. Fujii, S. Shiki, J. Low Temp. Phys. 194, 426–432 (2019). https://doi.org/10.1007/s10909-019-02149-y

    Article  ADS  Google Scholar 

  8. H. Matsuo, H. Ezawa, J. Low Temp. Phys. 184, 718–723 (2016). https://doi.org/10.1007/s10909-015-1462-z

    Article  ADS  Google Scholar 

  9. M. Ukibe, S. Shiki, Y. Kitajima, M. Ohkubo, Jpn. J. Appl. Phys. 51, 010115 (2012). https://doi.org/10.1143/JJAP.51.010115

    Article  ADS  Google Scholar 

  10. T. Noguchi, S.-C. Shi, J. Inatani, IEICE Trans. Elec. E78-C, 481–489 (1995)

    Google Scholar 

  11. D.F. Filipovic, S.S. Gearhart, G.M. Rebeiz, IEEE Trans. MTT 41, 1738–1749 (1993). https://doi.org/10.1109/22.247919

    Article  Google Scholar 

  12. W. Shan, W. Wu, S. Shi, in 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2018). https://doi.org/10.1109/IRMMW-THz.2018.8510451

  13. M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  14. https://www.shicryogenics.com/product/rp-062bs-4k-pulse-tube-cryocooler-series/

  15. H. Matsuo, H. Ezawa, Y. Kawamura, D. Kubo, N. Okada, R. Shimomukai, Presented at LTD-17 (2017)

  16. A. Niwa, Master’s Thesis, University of Tsukuba (2022) (in Japanese)

  17. A. Niwa, H. Matsuo, H. Ezawa, T. Koseki, T. Tamura, Submitted to J. Low Temp. Phys.

  18. G.M. Klemencic, P.A.R. Ade, S. Chase, R. Sudiwala, A.L. Woodcraft, Rev. Sci. Instrum. 87, 045107 (2016). https://doi.org/10.1063/1.4945691

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Special thanks to Dr. Wenlei Shan, Dr. Takafumi Kojima, Dr. Tom Nitta, and Dr. Tai Oshima for fruitful discussions and their supports. This research was performed at the Advanced Technology Center of NAOJ, with financial supports of Grant-in-Aid for Exploratory Research of JSPS KAKENHI grant numbers 15K13469, 18H05326, 18H05327, 20K20345 and 20K20346, and ISAS/JAXA basic R&D for future space science missions. A.N. is financially supported by JSPS Research Fellowship for Young Scientists.

Author information

Authors and Affiliations

Authors

Contributions

H.E. and H.M. wrote the manuscript. All authors contributed to discuss the design and developments in various aspects of this work. H.E., H.M. and A.N. mainly performed the experiments, measurements, and data analysis. G.F. and S.S. conducted the fabrication of the superconducting detector, and N.O. and M.F. have led the mechanical engineering of the cryogenics. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hajime Ezawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezawa, H., Matsuo, H., Niwa, A. et al. Recent Developments for the Terahertz Photon Detector System: Detector and Cryogenics. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03128-8

Keywords

Navigation