Skip to main content
Log in

Design of Large Low Noise Transition Edge Sensor Arrays for Future FIR Space Missions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Astrophysics 2020 Decadal Report recommended a line of Probe missions with far-infrared imaging or spectroscopy capabilities. The achievable sensitivity of these FIR missions will be enabled by cooled telescopes and advanced cryogenic detector technologies, potentially resulting in up to three orders of magnitude improvement in sensitivity and mapping speeds up to more than a million times of those achieved so far with past missions. We have obtained NASA funding to build and demonstrate transition edge sensor (TES)-based kilopixel arrays with the properties that match the requirements for cryogenic far-infrared space missions: The arrays are very closely tileable in one direction and with a moderate gap in the other direction. This array architecture can meet the sampling and pixel number requirement of a few 104 pixels. Many details of the architecture have already been demonstrated individually, and the detector board will be optimized for the use of the latest cryogenic NIST 2D time-domain SQUID readout multiplexers with a high-density fanout scheme. Additionally, we will use flex lines that are very similar to those developed at Princeton University for the ACT project. This method allows virtually unlimited tileability of the detector arrays and thus a compact detector/readout design for future FIR instrumentation requiring large pixel counts. We already have a pixel design which, if implemented with TES operating at less than 100 mK, will meet the continuum sensitivity requirements for background-limited cryogenic space missions of NEP < 10–18 W/√Hz). Furthermore, our array design will be compatible with lower noise TES designs for spectroscopy that we are currently demonstrating in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Astro 2020: https://www.nationalacademies.org/our-work/decadal-survey-on-astronomy-and-astrophysics-2020-astro2020

  2. Allen, C.A., Benford, D.J., Chervenak, J.A., Chuss, D.T., Staguhn, J.G., Miller, T.M., Moseley, S.H., Wollack, E.J., “Far Infrared Through Millimeter Backshort-Under-Grid Arrays,” 2006, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), “Millimeter and Submillimeter Detectors and Instrumentation for Astronomy,” Editors J. Zmuidzinas, W.S. Holland and S. Withington, W.D. Duncan, Vol. III, p. B2750

  3. D.A. Harper, M.C. Runyan, C.D. Dowell et al., The Far Infrared camera and polarimeter for SOFIA. J. Astron. Instr. 7(2), 1840008 (2018). https://doi.org/10.1142/S2251171718400081

    Article  Google Scholar 

  4. Jhabvala, C.A., Benford, D., Brekosky, R., Chang, M.-P., Costen, N., Datesman, A., Hilton, G., Irwin, K., Kogut, A., Lazear, J., Leong, E., Miller, T., Moseley, S.H., Sharp, E., Staguhn, J., Weston, A., Wollack, E., “Kilopixel Backshort–Under–Grid Arrays for the Primordial Inflation Polarization Explorer,” 2014, Proc. SPIE, “Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII,” Editors W.S. Holland and Jonas Zmuidzinas, Vol. 9153, p. 91533C, doi:https://doi.org/10.1117/12.2056995

  5. E.R. Switzer, P.A.R. Ade, T. Baildon, D. Benford, C.L. Bennett, D.T. Chuss, R. Datta, J.R. Eimer, D.J. Fixsen, N.N. Gandilo, T.M. Essinger-Hileman, M. Halpern, G. Hilton, K. Irwin, C. Jhabvala, M. Kimball, A. Kogut, J. Lazear, L.N. Lowe, J.J. McMahon, T.M. Miller, P. Mirel, S.H. Moseley, S. Pawlyk, S. Rodriguez, E. Sharp, P. Shirron, J.G. Staguhn, D.F. Sullivan, P. Taraschi, C.E. Tucker, A. Walts, E.J. Wollack, Sub-Kelvin cooling for two kilopixel bolometer arrays in the PIPER resceiver. Rev. Sci. Instrum. 90, 095104 (2019). https://doi.org/10.1063/1.5108649

    Article  ADS  Google Scholar 

  6. J.G. Staguhn, D.J. Benford, F. Pajot, Ames, T’. Allen, C.A., Chervenak, J.A., Lefranc, S., Maher, S., Moseley, S. H., Phillips, T., Rioux, C.G., Shafer, R.A., Voellmer, G.M., Proc. SPIE 5498, 438S (2004). https://doi.org/10.1117/12.552128

    Article  ADS  Google Scholar 

  7. G.J. Stacey, S. Hailey-Dunsheath, T. Nikola, S.C. Parshley, D.J. Benford, S.H. Moseley, J.G. Staguhn, R.A. Shafer, Proc. SPIE 5498, 232S (2004). https://doi.org/10.1117/12.552013

    Article  ADS  Google Scholar 

  8. T.A. Marriage, J.A. Chervenak, W.B. Doriese, NIMPA 559, 551M (2006). https://doi.org/10.1016/j.nima.2005.12.068

    Article  ADS  Google Scholar 

  9. Staguhn, J.G. , Benford, D.J. , Fixsen, D.J., Hilton, G., Irwin, K.D., Jhabvala, C.A. , Kovacs, A., Leclercq, S., Maher, S.F. , Miller, T.M. , Moseley, S.H. , Sharp, E.H. , Wollack, E.J., 2012, Proc. SPIE, 8452E, 0TS, doi: https://doi.org/10.1117/12.927037

  10. D.J. Benford et al., First astronomical use of multiplexed transition edge bolometers. Low Temp. Detect. 605, 589–592 (2002)

    ADS  Google Scholar 

  11. Staguhn, J., Brown, A., Duff3, S., Hilton, G., Sharp, E., Colazo, F., Costen, N., Moseley, S.H., Wang, F., Wollack, E., Yoon, S., 2022, Journal of Low Temperature Physics, vol. 209, issue 5–6, pp. 1180–1188;

  12. J. Glenn, C.M. Bradford, E. Rosolowsky, R. Amini, K. Alatalo, L. Armus, A.J. Benson et al., Galaxy evolution probe. J. Astron. Telescopes Instr. Syst. (2021). https://doi.org/10.1117/1.JATIS.7.3.034004

    Article  Google Scholar 

  13. E.M. Barrentine, K. Rostem, R.P. Brekosky, A.-D. Brown, F.A. Colazo, N.P. Costen, J.P. Hays-Wehle, W.-T. Hsieh, V. Kluengpho, A.S. Kutyrev, S.F. Maher, V. Mikula, T.M. Miller, J.B. Oxborrow, E.H. Sharp, T. Watanabe, E.J. Wollack, S.H. Moseley, Characterization of Si membrane TES bolometer arrays for the HIRMES instrument. J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1966-4

    Article  Google Scholar 

  14. T. Suzuki, P. Khosropanah, M.L. Ridder, R.A. Hijmering, J.R. Gao, H. Akamatsu, L. Gottardi, J. van der Kuur, B.D. Jackson, Development of ultra-low-noise TES bolometer arrays. J. Low Temp. Phys. Low Temp. Phys. 184, 52–59 (2016)

    Article  ADS  Google Scholar 

  15. Origins Space Telescope Technology Development Plan, 2019, https://asd.gsfc.nasa.gov/firs/docs/OriginsVolume2TechDevelopmentPlanREDACTED.pdf

Download references

Funding

Science Mission Directorate, 21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030,21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030, 21-SAT21-0030, and 21-SAT21-0030.

Author information

Authors and Affiliations

Authors

Contributions

JS is PI of project and wrote the manuscript. E.S., A.B., A.D., M.D., and V.M. contributed figures. All authors are Co-Is on project. All have contributed technical support and/or technical advise to the project.

Corresponding author

Correspondence to Johannes Staguhn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staguhn, J., Sharp, E., Brown, A. et al. Design of Large Low Noise Transition Edge Sensor Arrays for Future FIR Space Missions. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03084-3

Keywords

Navigation