Skip to main content
Log in

Nonequilibrium Effects in Ballistic Point Contacts Ta–Cu and 2H–NbSe2–Cu: Two-Gap Superconductivity in 2H–NbSe2

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The heterocontacts Ta–Cu and NbSe2–Cu have been studied. For the Ta–Cu contacts, the theoretical estimation of the value of δ-functional barrier at the boundary arising due to mismatch of fermionic parameters of the contacting metals is carried out and a good agreement between the calculation and experiment is obtained. An expression for the estimation of the diameter of the heterocontact on either side of the boundary is obtained. The magnitude of the jump-like decrease in the excess current (and the superconducting gap) due to the phase transition of the superconductor region near the point contact into a spatially inhomogeneous state when the critical concentration of nonequilibrium quasiparticles is reached has been determined. Obtained dependence of the additive differential resistance on the displacement at the contact arising after the phase transition, due to the excess charge of quasiparticles and the associated reverse current (or additive voltage). In 2H–NbSe2, there is a two-zone superconductivity character with \(\sim 8\) times different energy gap values. Under the influence of current injection of nonequilibrium quasiparticles, there is a sequential phase transition of layers adjacent to the point contact, in a spatially inhomogeneous state with a suppressed gap, which is accompanied by a step change in the slope of the IV curve with a discrete increase in differential resistance, jump-like movement of the boundary between areas with suppressed and equilibrium values of the energy gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.K. Yanson, L.F. Rybal’chenko, N.L. Bobrov, V.V. Fisun, Fiz. Nizk. Temp. 12, 552 (1986) [Sov. J. Low Temp. Phys. 12, 313 (1986)], https://fnt.ilt.kharkiv.ua/index.php/fnt/article/view/f12-0552r/2119 arXiv1512.00684

  2. I.K. Yanson, N.L. Bobrov, L.F. Rybal’chenko, V.V. Fisun, Fiz. Nizk. Temp. 13, 1123 (1987) [Sov. J. Low Temp. Phys. 13, 635 (1987)] https://fnt.ilt.kharkiv.ua/index.php/fnt/article/view/f13-1123r/2420 arXiv1512.03917

  3. V.A. Khlus, Fiz. Nizk. Temp. 9, 985, (1983) Sov. J. Low Temp. Phys. 9, 510 (1983) https://fnt.ilt.kharkiv.ua/index.php/fnt/article/view/f09-0985r/1617

  4. N.L. Bobrov, UFNe, 63(11), 1072, (2020) [https://doi.org/10.3367/UFNr.2019.11.038693UFNr, 190(11), 1143, (2020)], arXiv:2109.00806v1 [cond-mat.supr-con]

  5. N.L. Bobrov, Low Temp. Phys. 45, 482 (2019). https://doi.org/10.1063/1.5097356

    Article  ADS  CAS  Google Scholar 

  6. N.L. Bobrov, Fiz. Nyzk. Temp. 45, 562–575 (2019)

    Google Scholar 

  7. R.C. Dynes, V. Narayanamurti, J.P. Garno, Phys. Rev. Let. 39(4), 229 (1977). https://doi.org/10.1103/PhysRevLett.39.229

    Article  ADS  CAS  Google Scholar 

  8. S.B. Kaplan, C.C. Chi, D.N. Langenberg et al., Phys. Rev. B 14, 4854 (1976). https://doi.org/10.1103/PhysRevB.14.4854

    Article  ADS  CAS  Google Scholar 

  9. Y.V. Sharvin, JETP 21(3), 655 (1965)

    ADS  Google Scholar 

  10. I.O. Kulik, A.N. Omel’yanchuk, R.I. Shekhter, Sov. J. Low Temp. Phys. 3, 740 (1977)

    Google Scholar 

  11. I.O. Kulik, A.N. Omel’yanchuk, R.I. Shekhter, Fiz. Niz. Temp. 3, 1543 (1977)

    Google Scholar 

  12. N.L. Bobrov, L.F. Rybal’chenko, V.V. Fisun, I.K. Yanson, Fiz. Nizk. Temp. 13, 611 (1987)

    CAS  Google Scholar 

  13. N.L. Bobrov, L.F. Rybal’chenko, V.V. Fisun, I.K. Yanson, Sov. J. Low Temp. Phys. 12, 344 (1987)

    Google Scholar 

  14. R.I. Shekhter, I.O. Kulik, Fiz. Nizk. Temp. 9, 46 (1983) [Sov. J. Low Temp. Phys. 9, 22 (1983)].http://fnt.ilt.kharkiv.ua/index.php/fnt/article/view/f09-0046r/1486

  15. Wikipedia. Fermi energy https://en.wikipedia.org/wiki/Fermi_energy

  16. G. Bambakidis, Phys. Status Solidi (b) 54, K57 (1972). https://doi.org/10.1002/pssb.2220540150

    Article  ADS  CAS  Google Scholar 

  17. N.L. Bobrov, L.F. Rybal’chenko, V.V. Fisun, V.V. Khotkevich, Low Temp. Phys. 42, 811 (2016). https://doi.org/10.1063/1.4963330

    Article  ADS  CAS  Google Scholar 

  18. N.L. Bobrov, L.F. Rybal’chenko, V.V. Fisun, V.V. Khotkevich, Fiz. Nyzk. Temp. 42, 1935 (2016)

    Google Scholar 

  19. M.H. Halloran, J.H. Condon, J.E. Graebner, J.E. Kunzier, F.S.L. Hsu, Phys. Rev. B 1, 366 (1970). https://doi.org/10.1103/PhysRevB.1.366

    Article  ADS  Google Scholar 

  20. V.V. Ryazanov, V.V. Schmidt, L.A. Ermolaeva, J. Low Temp. Phys. 45(5/6), 507 (1981). https://doi.org/10.1007/BF00654497

    Article  ADS  CAS  Google Scholar 

  21. M.J.G. Lee, J. Caro, O.G. Croot, R. Griessen, Phys. Rev. B 31(12), 8244 (1985). https://doi.org/10.1103/PhysRevB.31.8244

    Article  ADS  CAS  Google Scholar 

  22. G.E. Blonder, M. Tinkham, T.M. Klapwjik, Phys. Rev. B 25, 4515 (1982). https://doi.org/10.1103/PhysRevB.25.4515

    Article  ADS  CAS  Google Scholar 

  23. N.L. Bobrov, S.I. Beloborod’ko, L.V. Tyutrina, I.K. Yanson, D.G. Naugle, K.D.D. Rathnayaka, Phys. Rev. B 71, 014512 (2005). https://doi.org/10.1103/PhysRevB.71.014512. arXiv:cond-mat/0412325 [cond-mat.suprcon]

    Article  ADS  CAS  Google Scholar 

  24. A.V. Zaitsev, Sov. Phys. JETP 59, 1015 (1984) Zh. Eksp. Teor. Fiz. 86, 1742 (1984). http://www.jetp.ras.ru/cgi-bin/dn/e_059_05_1015.pdf

  25. Yu.G. Naidyuk, K. Gloos, Low Temperature Physics 44, 257-268 (2018) Fiz. Nyzk. Temp., 44, 343-356 (2018).http://fnt.ilt.kharkiv.ua/index.php/fnt/article/view/f44-0343e/7827, https://doi.org/10.1063/1.5030447

  26. N.L. Bobrov, V.N. Chernobay, Yu.G. Naidyuk, L.V. Tyutrina, I.K. Yanson, D.G. Naugle, K.D.D. Rathnayaka, Fiz. Niz. Temp. 36(10–11), 1228–1243 (2010)

    Google Scholar 

  27. N.L. Bobrov, V.N. Chernobay, Yu.G. Naidyuk, L.V. Tyutrina, I.K. Yanson, D.G. Naugle, K.D.D. Rathnayaka, Low Temp. Phys. 36, 990–1003 (2010)

    Article  ADS  CAS  Google Scholar 

  28. V.E. Startsev, Local singularities in the Fermi surfaces and electronic transport phenomena in transition metals. Author’s Abstract of Doctoral Dissertation in Physical-Mathematical Sciences, Sverdlovsk (1983)

  29. N.L. Bobrov, L.F. Rybal’chenko, A.V. Khotkevich, I.K. Yanson, USSR Patent No. 1631626, Byull. Izobret., No. 8 (1991). https://patents.su/5-1631626-ustrojjstvo-dlya-polucheniya-okhlazhdaemogo-tochechnogo-kontakta-mezhdu-metallicheskimi-ehlektrodami.html

  30. P.N. Chubov, A.I. Akimenko, I.K. Yanson, USSR Patent No. 834803, Byull. Izobret., No. 20 (1981), p. 232. https://patents.su/2-834803-sposob-polucheniya-prizhimnykh-mikro-kohtaktob-mezhdu-metallicheskimiehlektrodami.html

  31. I.I. Mazin, A.A. Golubov, B. Nadgorny, J. Appl. Phys. 89, 7576 (2001). https://doi.org/10.1063/1.1357127

    Article  ADS  CAS  Google Scholar 

  32. N.L. Bobrov, J. Exp. Theor. Phys. 133, 59–70 (2021). https://doi.org/10.1134/S1063776121060108

    Article  CAS  Google Scholar 

  33. A.P. van Gelder, Solid State Comm. 25(12), 1097 (1978). https://doi.org/10.1016/0038-1098(78)90916-X

    Article  ADS  Google Scholar 

  34. G.E. Blonder, M. Tinkham, Phys. Rev. B 27, 112 (1983). https://doi.org/10.1103/PhysRevB.27.112

    Article  ADS  CAS  Google Scholar 

  35. I.K. Yanson, L.F. Rybal’chenko, V.V. Fisun, N.L. Bobrov, M.A. Obolenskii, M.B. Kosmyna, V.P. Seminozhenko, Sov. J. Low Temp. Phys. 14, 639 (1988)

    Google Scholar 

  36. I.K. Yanson, L.F. Rybal’chenko, V.V. Fisun, N.L. Bobrov, M.A. Obolenskii, M.B. Kosmyna, V.P. Seminozhenko, Fiz. Nizk. Temp. 14, 1157 (1988)

    ADS  CAS  Google Scholar 

  37. I.A. Gospodarev, V.V. Eremenko, K.V. Kravchenko, V.A. Sirenko, E.S. Syrkin, S.B. Feodos’ev, Low Temp. Phys. 36, 344 (2010). https://doi.org/10.1063/1.3423025

    Article  ADS  CAS  Google Scholar 

  38. I.A. Gospodarev, V.V. Eremenko, K.V. Kravchenko, V.A. Sirenko, E.S. Syrkin, S.B. Feodos’ev, Fiz. Nizk. Temp. 36, 436 (2010)

    Google Scholar 

  39. J. Edwards, R.F. Frindt, J. Phys. Chem. Solids 32, 2217 (1971). https://doi.org/10.1016/S0022-3697(71)80400-6

    Article  ADS  CAS  Google Scholar 

  40. T. Dvir, F. Massee, L. Attias, M. Khodas, M. Aprili, C.H.L. Quay, H. Steinberg, Nat. Commun. 9, 598 (2018). https://doi.org/10.1038/s41467-018-03000-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. N.L. Bobrov, L.F. Rybal’chenko, M.A. Obolenskii, V.V. Fisun, Fiz. Nizk. Temp. 11, 897 (1985)

    Google Scholar 

  42. N.L. Bobrov, L.F. Rybal’chenko, M.A. Obolenskii, V.V. Fisun Sov, J. Low Temp. Phys. 11, 510 (1985)

    Google Scholar 

  43. S.I. Beloborod’ko, A.N. Omel’yanchuk, Sov. J. Low Temp. Phys. 14, 630 (1988)

    Google Scholar 

  44. S.I. Beloborod’ko, A.N. Omel’yanchuk, Fiz. Niz. Temp. 14, 1142 (1988)

    ADS  Google Scholar 

  45. N.L. Bobrov, A.V. Khotkevich, G.V. Kamarchuk, P.N. Chubov, Low Temp. Phys. 40, 215 (2014). https://doi.org/10.1063/1.4869565

    Article  ADS  CAS  Google Scholar 

  46. N.L. Bobrov, A.V. Khotkevich, G.V. Kamarchuk, P.N. Chubov, Fiz. Niz. Temp. 40, 280 (2014)

    Google Scholar 

  47. N.L. Bobrov, S.I. Beloborod’ko, L.V. Tyutrina, V.N. Chernobay, I.K. Yanson, D.G. Naugle, K.D.D. Rathnayaka, Low Temp. Phys. 32, 489 (2006). https://doi.org/10.1063/1.2199452

    Article  ADS  CAS  Google Scholar 

  48. N.L. Bobrov, S.I. Beloborod’ko, L.V. Tyutrina, V.N. Chernobay, I.K. Yanson, D.G. Naugle, K.D.D. Rathnayaka, Fiz. Niz. Temp. 32, 641 (2006)

    Google Scholar 

  49. N.L. Bobrov, V.N. Chernobay, Yu.G. Naidyuk, L.V. Tyutrina, D.G. Naugle, K.D.D. Rathnayaka, S.L. Bud’ko, P.C. Canfield, I.K. Yanson, EPL 83, 37003 (2008). https://doi.org/10.1209/0295-5075/83/37003

    Article  ADS  CAS  Google Scholar 

  50. E.M. Rudenko, Low Temp. Phys. 38, 353 (2012). https://doi.org/10.1063/1.3699014

    Article  ADS  CAS  Google Scholar 

  51. E.M. Rudenko, Fiz. Nizk. Temp. 38, 451 (2012)

    Google Scholar 

  52. L.F. Rybal’chenko, V.V. Fisun, N.L. Bobrov, M.B. Kosmyna, A.I. Moshkov, V.P. Seminozhenko, I.K. Yanson, Sov. J. Low Temp. Phys. 15, 54 (1989)

    Google Scholar 

  53. L.F. Rybal’chenko, V.V. Fisun, N.L. Bobrov, M.B. Kosmyna, A.I. Moshkov, V.P. Seminozhenko, I.K. Yanson, Fiz. Nizk. Temp. 15, 95 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Manuscript fully prepared by the author NLB.

Corresponding author

Correspondence to N. L. Bobrov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrov, N.L. Nonequilibrium Effects in Ballistic Point Contacts Ta–Cu and 2H–NbSe2–Cu: Two-Gap Superconductivity in 2H–NbSe2. J Low Temp Phys 214, 399–426 (2024). https://doi.org/10.1007/s10909-024-03052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-024-03052-x

Keywords

Navigation