Skip to main content
Log in

Vinen’s Latest Thoughts on the “Bump” Puzzle in Decaying He II Counterflow Turbulence

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The pioneering work of William F. Vinen (also known as Joe Vinen) on thermal counterflow turbulence in superfluid helium-4 largely inaugurated the research on quantum turbulence. Despite decades of research on this topic, there are still open questions remaining to be solved. One such question is related to the anomalous increase in the vortex-line density L(t) during the decay of counterflow turbulence, which is often termed as the “bump” on the L(t) curve. In 2016, Vinen and colleagues developed a theoretical model to explain this puzzling phenomenon (JETP Letters, 103, 648-652 (2016)). However, he realized in the last a few years of his life that this theory must be at least inadequate. In remembrance of Joe, we discuss in this paper his latest thoughts on counterflow turbulence and its decay. We also briefly outline our recent experimental and numerical work on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Tilley, J. Tilley, Superfluidity and Superconductivity, 3rd edn. (Institute of Physics, Bristol, UK, 1990). https://doi.org/10.1201/9780203737897

    Book  Google Scholar 

  2. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, vol. 6, 2nd edn. (Pergamon Press, Oxford, 1987) https://doi.org/10.1016/C2013-0-03799-1

  3. R.J. Donnelly, Quantized Vortices in Helium II, vol. 2 (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  4. W.F. Vinen, Mutual friction in a heat current in liquid helium II. I. experiments on steady heat currents. Proc. Roy. Soc. A 240, 114–127 (1957). https://doi.org/10.1098/rspa.1957.0071

    Article  ADS  Google Scholar 

  5. W.F. Vinen, Mutual friction in a heat current in liquid helium II. II. experiments on transient effects. Proc. Roy. Soc. A 240, 128–143 (1957). https://doi.org/10.1098/rspa.1957.0072

    Article  ADS  Google Scholar 

  6. W.F. Vinen, Mutual friction in a heat current in liquid helium II. II. experiments on transient effects. Proc Roy Soc A 240, 128–143 (1957)

    ADS  Google Scholar 

  7. W.F. Vinen, Mutual friction in a heat current in liquid helium II. IV. critical heat currents in wide channels. Proc. Roy. Soc. A 243, 400–413 (1958). https://doi.org/10.1098/rspa.1958.0007

    Article  ADS  Google Scholar 

  8. K.W. Schwarz, Theory of turbulence in superfluid \(^{4}\rm He\). Phys. Rev. Lett. 38, 551–554 (1977). https://doi.org/10.1103/PhysRevLett.38.551

    Article  ADS  Google Scholar 

  9. K.W. Schwarz, Three-dimensional vortex dynamics in superfluid \(^{4}\rm He\): homogeneous superfluid turbulence. Phys. Rev. B 38, 2398–2417 (1988). https://doi.org/10.1103/PhysRevB.38.2398

    Article  ADS  Google Scholar 

  10. H. Adachi, S. Fujiyama, M. Tsubota, Steady-state counterflow quantum turbulence: simulation of vortex filaments using the full biot-savart law. Phys. Rev. B 81, 104511 (2010). https://doi.org/10.1103/PhysRevB.81.104511

    Article  ADS  Google Scholar 

  11. D. Kivotides, Motion of a spherical solid particle in thermal counterflow turbulence. Phys. Rev. B 77, 174508 (2008). https://doi.org/10.1103/PhysRevB.77.174508

    Article  ADS  Google Scholar 

  12. A.W. Baggaley, C.F. Barenghi, Acceleration statistics in thermally driven superfluid turbulence. Phys. Rev. E 89, 033006 (2014). https://doi.org/10.1103/PhysRevE.89.033006

    Article  ADS  Google Scholar 

  13. J.T. Tough, Superfluid turbulence (North-Holland). Amsterdam 8, 133–219 (1982). https://doi.org/10.1016/S0079-6417(08)60006-2

    Article  Google Scholar 

  14. D.J. Melotte, B.C. F, Transition to Normal Fluid Turbulence in Helium II. Phys. Rev. Lett. 80, 4181 (1998).

  15. J.F. Allen, D.J. Griffiths, D.V. Osborne, Velocity fields of helium II carrying a heat current. Proc. R. Soc. Lond. A Math. Phys. Sci. 287(1410), 328–342 (1965). https://doi.org/10.1098/rspa.1965.0183

  16. J.T. Tough, W.D. McCormick, J.G. Dash, Effects of turbulence in he II thermal counterflow. Phys. Rev. 140, A1524–A1528 (1965). https://doi.org/10.1103/PhysRev.140.A1524

    Article  ADS  Google Scholar 

  17. W. Guo, S.B. Cahn, J.A. Nikkel, W.F. Vinen, D.N. McKinsey, Visualization study of counterflow in superfluid \(^4\)He using metastable helium molecules. Phys. Rev. Lett. 105, 045301 (2010). https://doi.org/10.1103/PhysRevLett.105.045301

    Article  ADS  Google Scholar 

  18. T.V. Chagovets, S.W. Van Sciver, A study of thermal counterflow using particle tracking velocimetry. Phys. Fluids 23, 107102 (2011). https://doi.org/10.1063/1.3657084

    Article  ADS  Google Scholar 

  19. M. La Mantia, D. Duda, M. Rotter, L. Skrbek, Lagrangian accelerations of particles in superfluid turbulence. J. Fluid Mech. 717, R9 (2013). https://doi.org/10.1017/jfm.2013.31

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Kubo, Y. Tsuji, Statistical properties of small particle trajectories in a fully developed turbulent state in He-II. J. Low Temp. Phys. 196, 170 (2019). https://doi.org/10.1007/s10909-019-02192-9

    Article  ADS  Google Scholar 

  21. A. Marakov, J. Gao, W. Guo, S.W. Van Sciver, G.G. Ihas, D.N. McKinsey, W.F. Vinen, Visualization of the normal-fluid turbulence in counterflowing superfluid \(^{4}\)He. Phys. Rev. B 91, 094503 (2015). https://doi.org/10.1103/PhysRevB.91.094503

    Article  ADS  Google Scholar 

  22. J. Gao, E. Varga, W. Guo, W.F. Vinen, Energy spectrum of thermal counterflow turbulence in superfluid helium-4. Phys. Rev. B 96, 094511 (2017). https://doi.org/10.1103/PhysRevB.96.094511

    Article  ADS  Google Scholar 

  23. J. Gao, E. Varga, W. Guo, W.F. Vinen, Statistical measurement of counterflow turbulence in superfluid helium-4 using he\(_2^*\) tracer-line tracking technique. J. Low Temp. Phys. 187, 490–496 (2017). https://doi.org/10.1007/s10909-016-1681-y

    Article  ADS  Google Scholar 

  24. S. Bao, W. Guo, V..S. L’vov, A. Pomyalov, Statistics of turbulence and intermittency enhancement in superfluid \(^{4}\rm He\) counterflow. Phys. Rev. B 98, 174509 (2018). https://doi.org/10.1103/PhysRevB.98.174509

    Article  ADS  Google Scholar 

  25. J. Gao, W. Guo, S. Yui, M. Tsubota, W.F. Vinen, Dissipation in quantum turbulence in superfluid \(^4{{\rm He}}\) above 1K. Phys. Rev. B 97, 184518 (2018). https://doi.org/10.1103/PhysRevB.97.184518

    Article  ADS  Google Scholar 

  26. L. Skrbek, A.V. Gordeev, F. Soukup, Decay of counterflow He II turbulence in a finite channel. Phys. Rev. E 67, 047302 (2003). https://doi.org/10.1103/PhysRevE.67.047302

    Article  ADS  Google Scholar 

  27. A.V. Gordeev, T.V. Chagovets, F. Soukup, L. Skrbek, Decaying counterflow turbulence in He II. J. Low Temp. Phys. 138, 549 (2005). https://doi.org/10.1007/s10909-005-2257-4

    Article  ADS  Google Scholar 

  28. J. Gao, W. Guo, W.F. Vinen, Determination of the effective kinematic viscosity for the decay of quasiclassical turbulence in superfluid \({^4}\)He. Phys. Rev. B 94, 094502 (2016). https://doi.org/10.1103/PhysRevB.94.094502

    Article  ADS  Google Scholar 

  29. J. Gao, W. Guo, V..S. L’vov, A. Pomyalov, L. Skrbek, E. Varga, W..F. Vinen, Decay of counterflow turbulence in superfluid \({^4}\)He. JETP Lett. 103, 648–652 (2016). https://doi.org/10.1134/S0021364016100064

    Article  ADS  Google Scholar 

  30. S. Babuin, V..S. L’vov, A. Pomyalov, L. Skrbek, E. Varga, Coexistence and interplay of quantum and classical turbulence in superfluid \(^{4}\rm He\): Decay, velocity decoupling, and counterflow energy spectra. Phys. Rev. B 94, 174504 (2016). https://doi.org/10.1103/PhysRevB.94.174504

    Article  ADS  Google Scholar 

  31. S.R. Stalp, L. Skrbek, R.J. Donnelly, Decay of grid turbulence in a finite channel. Phys. Rev. Lett. 82, 4831–4834 (1999). https://doi.org/10.1103/PhysRevLett.82.4831

    Article  ADS  Google Scholar 

  32. K.W. Schwarz, J.R. Rozen, Anomalous decay of turbulence in superfluid \(^{4}\rm He\). Phys. Rev. Lett. 66, 1898–1901 (1991). https://doi.org/10.1103/PhysRevLett.66.1898

    Article  ADS  Google Scholar 

  33. C.F. Barenghi, A.V. Gordeev, L. Skrbek, Depolarization of decaying counterflow turbulence in He II. Phys. Rev. E 74, 026309 (2006). https://doi.org/10.1103/PhysRevE.74.026309

    Article  ADS  Google Scholar 

  34. Y. Mineda, M. Tsubota, W.F. Vinen, Decay of counterflow quantum turbulence in superfluid \(^4\)He. J. Low Temp. Phys. 171, 511 (2013). https://doi.org/10.1007/s10909-012-0800-7

    Article  ADS  Google Scholar 

  35. P.M. Walmsley, A.I. Golov, Coexistence of quantum and classical flows in quantum turbulence in the \(T=0\) limit. Phys. Rev. Lett. 118, 134501 (2017). https://doi.org/10.1103/PhysRevLett.118.134501

    Article  ADS  Google Scholar 

  36. J. Gao, A. Marakov, W. Guo, B.T. Pawlowski, S.W. Van Sciver, G.G. Ihas, D.N. McKinsey, W.F. Vinen, Producing and imaging a thin line of He\(_2^*\) molecular tracers in helium-4. Rev. Sci. Instrum. 86, 093904 (2015). https://doi.org/10.1063/1.4930147

    Article  ADS  Google Scholar 

  37. B. Mastracci, W. Guo, An apparatus for generation and quantitative measurement of homogeneous isotropic turbulence in He II. Rev. Sci. Instrum. 89, 015107 (2018). https://doi.org/10.1063/1.4997735

    Article  ADS  Google Scholar 

  38. Y. Tang, W. Guo, V..S. L’vov, A. Pomyalov, Eulerian and Lagrangian second-order statistics of superfluid \(^{4}\rm He\) grid turbulence. Phys. Rev. B 103, 144506 (2021). https://doi.org/10.1103/PhysRevB.103.144506

    Article  ADS  Google Scholar 

  39. W.F. Vinen, Classical character of turbulence in a quantum liquid. Phys. Rev. B 61, 1410–1420 (2000). https://doi.org/10.1103/PhysRevB.61.1410

    Article  ADS  Google Scholar 

  40. S.R. Stalp, J.J. Niemela, W.F. Vinen, R.J. Donnelly, Dissipation of grid turbulence in helium II. Phys. Fluids 14(4), 1377–1379 (2002). https://doi.org/10.1063/1.1449902

    Article  ADS  MATH  Google Scholar 

  41. T.V. Chagovets, A.V. Gordeev, L. Skrbek, Effective kinematic viscosity of turbulent He II. Phys. Rev. E 76, 027301 (2007). https://doi.org/10.1103/PhysRevE.76.027301

    Article  ADS  Google Scholar 

  42. C.E. Leith, Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids 10(7), 1409–1416 (1967). https://doi.org/10.1063/1.1762300

    Article  ADS  Google Scholar 

  43. V.N. Grebenev, S.V. Nazarenko, S.B. Medvedev, I.V. Schwab, Y.A. Chirkunov, Self-similar solution in the Leith model of turbulence: anomalous power law and asymptotic analysis. J. Phys. A: Math. Theor. 47, 025501 (2014). https://doi.org/10.1088/1751-8113/47/2/025501

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. S.V. Nazarenko, V.N. Grebenev, Self-similar formation of the kolmogorov spectrum in the Leith model of turbulence. J. Phys. A: Math. Theor. 50, 035501 (2017). https://doi.org/10.1088/1751-8121/50/3/035501

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. R. Rubinstein, T.T. Clark, S. Kurien, Leith Diffusion model for homogeneous anisotropic turbulence. Comput. Fluids 151, 108–114 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. L. Biferale, D. Khomenko, V.S L’vov, A. Pomyalov, I. Procaccia, G. Sahoo, Superfluid helium in three-dimensional counterflow differs strongly from classical flows: anisotropy on small scales. Phys. Rev. Lett. 122, 144501 (2019).

  47. L. Biferale, D. Khomenko, V..S. L’vov, A. Pomyalov, I. Procaccia, G. Sahoo, Strong anisotropy of superfluid \(^{4}\rm He\) counterflow turbulence. Phys. Rev. B 100, 134515 (2019). https://doi.org/10.1103/PhysRevB.100.134515

    Article  ADS  Google Scholar 

  48. R. Rubinstein, T.T. Clark, S. Kurien, Leith diffusion model for homogeneous anisotropic turbulence. Comput. Fluids 151, 108–114 (2017). https://doi.org/10.1016/j.compfluid.2016.07.009

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Bao, T. Kanai, Y. Zhang, L.N. Cattafesta, W. Guo, Stereoscopic detection of hot spots in superfluid \(^4\)He (He II) for accelerator-cavity diagnosis. Int. J. Heat Mass Tran. 161, 120259 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120259

    Article  Google Scholar 

  50. B. Mastracci, W. Guo, Exploration of thermal counterflow in He II using particle tracking velocimetry. Phys. Rev. Fluids 3, 063304 (2018). https://doi.org/10.1103/PhysRevFluids.3.063304

    Article  ADS  Google Scholar 

  51. B. Mastracci, S. Bao, W. Guo, W.F. Vinen, Particle tracking velocimetry applied to thermal counterflow in superfluid \(^{4}\rm He\): Motion of the normal fluid at small heat fluxes. Phys. Rev. Fluids 4, 083305 (2019). https://doi.org/10.1103/PhysRevFluids.4.083305

    Article  ADS  Google Scholar 

  52. S. Yui, H. Kobayashi, M. Tsubota, W. Guo, Fully coupled two-fluid dynamics in superfluid \(^{4}\rm He\): anomalous anisotropic velocity fluctuations in counterflow. Phys. Rev. Lett. 124, 155301 (2020). https://doi.org/10.1103/PhysRevLett.124.155301

    Article  ADS  Google Scholar 

  53. J.I. Polanco, G. Krstulovic, Counterflow-induced inverse energy cascade in three-dimensional superfluid turbulence. Phys. Rev. Lett. 125, 254504 (2020). https://doi.org/10.1103/PhysRevLett.125.254504

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the National Science Foundation under Grant No. DMR-2100790 and the Gordon and Betty Moore Foundation through Grant GBMF11567. The work was done at the National High Magnetic Field Laboratory at Florida State University, which is supported by the National Science Foundation Cooperative Agreement No. DMR-1644779 and the state of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Kanai, T. Vinen’s Latest Thoughts on the “Bump” Puzzle in Decaying He II Counterflow Turbulence. J Low Temp Phys 212, 351–362 (2023). https://doi.org/10.1007/s10909-023-02961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02961-7

Keywords

Navigation