Skip to main content
Log in

Super DIOS Project for Exploring “Dark Baryon”

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Super DIOS project, which is an improved version of DIOS (Diffuse Intergalactic Oxygen Surveyor), is one of the candidates for Japan’s future scientific satellites, to be launched after 2030. The main scientific objective of the project is to unravel the flow of energy and metal cycles at various scales from galaxies, galaxy clusters to the warm-hot intergalactic medium along the Cosmic Web. The primary goal is the quantification of baryons, especially the unidentified “dark baryons”. Super DIOS will have a wide field of view of \(\sim\)1 degree, with an angular resolution of \(\sim\)15 arcseconds and high energy resolution (\(E/dE > 1000\)). The detector will be a 30 kilo-pixel array of Transition Edge sensor (TES) with a micro-wave SQUID multiplexer read-out system. In this paper, we report on the scientific concept of Super DIOS and the status of its newly developed technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2021, Astronomy & Astrophysics, 652, C4. https://doi.org/10.1051/0004-6361/201833910e

  2. M. Fukugita, C.J. Hogan, P.J.E. Peebles, Astrophys. J. 503, 518 (1998). https://doi.org/10.1086/306025

    Article  Google Scholar 

  3. R. Cen, J.P. Ostriker, Astrophys. J. 514, 1 (1999). https://doi.org/10.1086/306949

    Article  Google Scholar 

  4. F. Nicastro, J. Kaastra, Y. Krongold et al., Nature 558, 406 (2018). https://doi.org/10.1038/s41586-018-0204-1

    Article  Google Scholar 

  5. H. Tanimura, G. Hinshaw, I.G. McCarthy et al., Mon. Not. R. Astron. Soc. 483, 223 (2019). https://doi.org/10.1093/mnras/sty3118

    Article  Google Scholar 

  6. A. de Graaff, Y.-C. Cai, C. Heymans et al., Astron. & Astrophys. 624, A48 (2019). https://doi.org/10.1051/0004-6361/201935159

    Article  Google Scholar 

  7. S. Walker, D. Nagai, A. Simionescu et al., Bull. Orfeatdhe Am. Astron. Soc. 51, 218 (2019)

    Google Scholar 

  8. A. Simionescu, S. Ettori, N. Werner et al., Experiment. Astron. (2021). https://doi.org/10.1007/s10686-021-09720-0

  9. T. Ohashi, M. Ishida, S. Sasaki et al., Soc. Photo-Opt. Instrument. Eng. (SPIE) Conf. Ser. 6266, 62660G (2006). https://doi.org/10.1117/12.671199

    Article  Google Scholar 

  10. T. Takahashi, M. Kokubun, K. Mitsuda et al., Journal of astronomical telescopes. Instrument. Syst. 4, 021402 (2018). https://doi.org/10.1117/1.JATIS.4.2.021402

    Article  Google Scholar 

  11. M. Tashiro, H. Maejima, K. Toda et al., Society of photo-optical instrumentation engineers (SPIE) conference series 10699, 1069922 (2018). https://doi.org/10.1117/12.2309455

  12. X. Barcons, D. Barret, A. Decourchelle et al., Astron. Nachr. 338, 153 (2017). https://doi.org/10.1002/asna.201713323

    Article  Google Scholar 

  13. D. Barret, T. Lam Trong, J.-W. den Herder et al., Society of photo-optical instrumentation engineers (SPIE) conference series 10699, 106991G (2018). https://doi.org/10.1117/12.2312409

  14. W. Cui, L.-B. Chen, B. Gao et al., J. Low Temp. Phys. 199, 502 (2020). https://doi.org/10.1007/s10909-019-02279-3

    Article  Google Scholar 

  15. D.A. Schwartz, A. Vikhlinin, H. Tananbaum et al., Society of photo-optical instrumentation engineers (SPIE) conference series 11118, 111180K (2019). https://doi.org/10.1117/12.2533637

  16. X. Xu, J. Cisewski-Kehe, S.B. Green et al., Astron. Comput. 27, 34 (2019). https://doi.org/10.1016/j.ascom.2019.02.003

    Article  Google Scholar 

  17. Sasaki, T., 2016, Ph.D thesis, Tokyo University of Science, Japan

  18. Abazajian, K., Addison, G., Adshead, P., et al. 2019, arXiv:1907.04473

  19. A. Pillepich, D. Nelson, L. Hernquist et al., Mon. Not. R. Astron. Soc. 475, 648 (2018). https://doi.org/10.1093/mnras/stx3112

    Article  Google Scholar 

  20. Y. Takei, E. Ursino, E. Branchini et al., Astrophys. J. 734, 91 (2011). https://doi.org/10.1088/0004-637X/734/2/91

    Article  Google Scholar 

  21. K.D. Irwin, K.W. Lehnert, Appl. Phys. Lett. 85, 2107 (2004). https://doi.org/10.1063/1.1791733

    Article  Google Scholar 

  22. R. Fujimoto, Y. Takei, K. Mitsuda et al., Journal of astronomical telescopes. Instrument Syst. 4, 011208 (2018). https://doi.org/10.1117/1.JATIS.4.1.011208

    Article  Google Scholar 

  23. K. Kanao, S. Yoshida, M. Miyaoka et al., Cryogenics 88, 143 (2017). https://doi.org/10.1016/j.cryogenics.2017.10.018

    Article  Google Scholar 

  24. Y. Nakashima, F. Hirayama, S. Kohjiro et al., Appl. Phys. Lett. 117, 122601 (2020). https://doi.org/10.1063/5.0016333

    Article  Google Scholar 

  25. S. Kohjiro, F. Hirayama, Superconduct Sci. Technol 31, 035005 (2018). https://doi.org/10.1088/1361-6668/aaa3c1

    Article  Google Scholar 

  26. Henderson, S. W., Ahmed, Z., Austermann, J., et al. 2018, Society of photo-optical instrumentation engineers (SPIE) conference series, 10708, 1070819. https://doi.org/10.1117/12.2314435

  27. Y. Imai, 2022, Ph.D thesis, Saitama University, Japan

  28. Y. Ishisaki, H. Kurabayashi, A. Hoshino et al., J. Low Temp. Phys. 151, 131 (2008). https://doi.org/10.1007/s10909-007-9628-y

    Article  Google Scholar 

  29. Y. Imai, F. Hirayama, S. Kohjiro et al., TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 57, 4 (2022). https://doi.org/10.2221/jcsj.57.246

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from all the members who supported the studies in the DIOS program. This project is partially supported by JSPS KAKENHI Grant Numbers 26220703, 15H05438, 17K05393, 18H01260, 20K20920, and 20H05857.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, K., Yamasaki, N.Y., Ishida, M. et al. Super DIOS Project for Exploring “Dark Baryon”. J Low Temp Phys 209, 971–979 (2022). https://doi.org/10.1007/s10909-022-02910-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02910-w

Keywords

Navigation