Skip to main content
Log in

DESHIMA 2.0: Development of an Integrated Superconducting Spectrometer for Science-Grade Astronomical Observations

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Integrated superconducting spectrometer (ISS) technology will enable ultra-wideband, integral-field spectroscopy for (sub)millimeter-wave astronomy, in particular, for uncovering the dust-obscured cosmic star formation and galaxy evolution over cosmic time. Here, we present the development of DESHIMA 2.0, an ISS for ultra-wideband spectroscopy toward high-redshift galaxies. DESHIMA 2.0 is designed to observe the 220–440 GHz band in a single shot, corresponding to a redshift range of z = 3.3–7.6 for the ionized carbon emission ([C II] 158 \(\upmu\)m). The first-light experiment of DESHIMA 1.0, using the 332–377 GHz band, has shown an excellent agreement among the on-sky measurements, the laboratory measurements, and the design. As a successor to DESHIMA 1.0, we plan the commissioning and the scientific observation campaign of DESHIMA 2.0 on the ASTE 10-m telescope in 2023. Ongoing upgrades for the full octave-bandwidth system include the wideband 347-channel chip design and the wideband quasi-optical system. For efficient measurements, we also develop the observation strategy using the mechanical fast sky-position chopper and the sky-noise removal technique based on a novel data-scientific approach. In the paper, we show the recent status of the upgrades and the plans for the scientific observation campaign.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A model that includes only photon noise and quasi-particle recombination noise as noise sources.

References

  1. R. Kawabe, K. Kohno, Y. Tamura, T. Takekoshi, T. Oshima, S. Ishii, Proc. SPIE 9906, 779 (2016). https://doi.org/10.1117/12.2232202

    Article  Google Scholar 

  2. P.D. Klaassen, T.K. Mroczkowski, C. Cicone, E. Hatziminaoglou, S. Sartori, C.D. Breuck, S. Bryan, S.R. Dicker, C. Duran, C. Groppi, H. Kaercher, R. Kawabe, K. Kohno, J. Geach, Proc. SPIE 11445, 544 (2020). https://doi.org/10.1117/12.2561315

    Article  Google Scholar 

  3. Z. Lou, Y.X. Zuo, Q.J. Yao, S.C. Shi, J. Yang, X.P. Chen, Appl. Opt. 59(11), 3353 (2020). https://doi.org/10.1364/AO.388320

    Article  ADS  Google Scholar 

  4. J. Wheeler, S. Hailey-Dunsheath, E. Shirokoff, P.S. Barry, C.M. Bradford, S. Chapman, G. Che, J. Glenn, M. Hollister, A. Kovács, H.G. LeDuc, P. Mauskopf, R. McGeehan, C.M. McKenney, R. O’Brient, S. Padin, T. Reck, C. Ross, C. Shiu, C.E. Tucker, R. Williamson, J. Zmuidzinas, Proc. SPIE 9914, 904 (2016). https://doi.org/10.1117/12.2233798

  5. A. Endo, K. Karatsu, A. Pascual Laguna, B. Mirzaei, R. Huiting, D. Thoen, V. Murugesan, S.J.C. Yates, J. Bueno, N.V. Marrewijk, S. Bosma, O. Yurduseven, N. Llombart, J. Suzuki, M. Naruse, P.J. de Visser, P.P. van der Werf, T.M. Klapwijk, J.J.A. Baselmans, J. Astron. Telesc. Instrum. Syst. 5(3), 1 (2019). https://doi.org/10.1117/1.JATIS.5.3.035004

    Article  Google Scholar 

  6. G. Cataldo, E.M. Barrentine, B.T. Bulcha, N. Ehsan, L.A. Hess, O. Noroozian, T.R. Stevenson, K. U-Uen, E.J. Wollack, S.H. Moseley, J. Low Temp. Phys. 193(5–6), 923 (2018). https://doi.org/10.1007/s10909-018-1902-7

    Article  ADS  Google Scholar 

  7. H. Ezawa, R. Kawabe, K. Kohno, S. Yamamoto, Proc. SPIE 5489, 763 (2004). https://doi.org/10.1117/12.551391

  8. H. Ezawa, K. Kohno, R. Kawabe, S. Yamamoto, H. Inoue, H. Iwashita, H. Matsuo, T. Okuda, T. Oshima, T. Sakai, K. Tanaka, N. Yamaguchi, G.W. Wilson, M.S. Yun, I. Aretxaga, D. Hughes, J. Austermann, T.A. Perera, K.S. Scott, L. Bronfman, J.R. Cortes, Proc. SPIE 7012, 88 (2008). https://doi.org/10.1117/12.789652

  9. A. Endo, K. Karatsu, Y. Tamura, T. Oshima, A. Taniguchi, T. Takekoshi, S. Asayama, T.J.L.C. Bakx, S. Bosma, J. Bueno, K.W. Chin, Y. Fujii, K. Fujita, R. Huiting, S. Ikarashi, T. Ishida, S. Ishii, R. Kawabe, T.M. Klapwijk, K. Kohno, A. Kouchi, N. Llombart, J. Maekawa, V. Murugesan, S. Nakatsubo, M. Naruse, K. Ohtawara, A. Pascual Laguna, J. Suzuki, K. Suzuki, D.J. Thoen, T. Tsukagoshi, T. Ueda, P.J.D. Visser, P.P.V.D. Werf, S.J.C. Yates, Y. Yoshimura, O. Yurduseven, J.J.A. Baselmans, Nat. Astron. 3, 989 (2019). https://doi.org/10.1038/s41550-019-0850-8

    Article  Google Scholar 

  10. S.O. Dabironezare, Fourier optics field representations for the design of wide field-of-view imagers at sub-millimetre wavelengths. Ph.D. thesis, Delft University of Technology (2020). https://doi.org/10.4233/uuid:23c845e1-9546-4e86-ae77-e0f14272517b

  11. T. Takekoshi, K. Karatsu, J. Suzuki, Y. Tamura, T. Oshima, A. Taniguchi, S. Asayama, T.J.L.C. Bakx, J.J.A. Baselmans, S. Bosma, J. Bueno, K.W. Chin, Y. Fujii, K. Fujita, R. Huiting, S. Ikarashi, T. Ishida, S. Ishii, R. Kawabe, T.M. Klapwijk, K. Kohno, A. Kouchi, N. Llombart, J. Maekawa, V. Murugesan, S. Nakatsubo, M. Naruse, K. Ohtawara, A. Pascual Laguna, K. Suzuki, D.J. Thoen, T. Tsukagoshi, T. Ueda, P.J.D. Visser, P.P.V.D. Werf, S.J.C. Yates, Y. Yoshimura, O. Yurduseven, A. Endo, J. Low Temp. Phys. 199, 231 (2020). https://doi.org/10.1007/s10909-020-02338-0

    Article  ADS  Google Scholar 

  12. M. Bonato, M. Negrello, Z.Y. Cai, G. De Zotti, A. Bressan, A. Lapi, C. Gruppioni, L. Spinoglio, L. Danese, MNRAS 438(3), 2547 (2014). https://doi.org/10.1093/mnras/stt2375

    Article  ADS  Google Scholar 

  13. A. Endo, A. Taniguchi, S.A. Brackenhoff, Y. Togami, K. Matsuda, M. Hagimoto. deshima-dev/deshima-sensitivity (2021). https://doi.org/10.5281/zenodo.3966839

  14. A. Wootten, A.R. Thompson, Proc. IEEE 97, 1463–1471 (2009). https://doi.org/10.1109/JPROC.2009.2020572

    Article  ADS  Google Scholar 

  15. A. Pascual Laguna, K. Karatsu, D.J. Thoen, V. Murugesan, B.T. Buijtendorp, A. Endo, J.J.A. Baselmans, IEEE Trans. Terahertz Sci. Technol. 11(6), 635 (2021). https://doi.org/10.1109/TTHZ.2021.3095429

    Article  ADS  Google Scholar 

  16. M. Rybak, T. Bakx, J. Baselmans, K. Karatsu, K. Kohno, T. Takekoshi, Y. Tamura, A. Taniguchi, P. van der Werf, A. Endo, J. Low Temp. Phys. (2022). https://doi.org/10.1007/s10909-022-02730-y

    Article  Google Scholar 

  17. D.J. Thoen, V. Murugesan, A. Pascual Laguna, K. Karatsu, A. Endo, J.J.A. Baselmans, J. Vac. Sci. Technol. B 40, 052603 (2022). https://doi.org/10.1116/6.0001918

    Article  Google Scholar 

  18. A. Neto, IEEE Trans. Antennas Propag. 58(7), 2238 (2010). https://doi.org/10.1109/TAP.2010.2048879

    Article  ADS  Google Scholar 

  19. A. Neto, S. Monni, F. Nennie, IEEE Trans. Antennas Propag. 58(7), 2248 (2010). https://doi.org/10.1109/TAP.2010.2048880

    Article  ADS  Google Scholar 

  20. S. Hähnle, O. Yurduseven, S. van Berkel, N. Llombart, J. Bueno, S.J.C. Yates, V. Murugesan, D.J. Thoen, A. Neto, J.J.A. Baselmans, IEEE Trans. Antennas Propag. 68(7), 5675 (2020). https://doi.org/10.1109/TAP.2019.2963563

    Article  ADS  Google Scholar 

  21. E. Huijten, Y. Roelvink, S.A. Brackenhoff, A. Taniguchi, T.J.L.C. Bakx, K.B. Marthi, S. Zaalberg, A.K. Doing, J.J.A. Baselmans, K.W. Chin, R. Huiting, K. Karatsu, A. Pascual Laguna, Y. Tamura, T. Takekoshi, S.J.C. Yates, M. van Hoven, A. Endo, J. Astron. Telesc. Instrum. Syst. 8(2), 1 (2022). https://doi.org/10.1117/1.JATIS.8.2.028005

    Article  Google Scholar 

  22. A. Taniguchi, Y. Tamura, S. Ikeda, T. Takekoshi, R. Kawabe, AJ 162(3), 111 (2021). https://doi.org/10.3847/1538-3881/ac11f7

    Article  ADS  Google Scholar 

  23. S.A. Brackenhoff, SPLITTER: A data model and algorithm for detecting spectral lines and continuum emission of high-redshift galaxies using deshima 2.0. Master’s thesis, Delft University of Technology (2021). https://resolver.tudelft.nl/uuid:097bbb7a-ca0c-4847-9773-edb1c9e1d4ab

  24. E. Huijten, S.A. Brackenhoff. deshima-dev/tiempo_deshima (2021). https://doi.org/10.5281/zenodo.4279085

  25. T.J.L.C. Bakx, S.A. Brackenhoff. deshima-dev/galspec (2020). https://doi.org/10.5281/zenodo.4279061

Download references

Acknowledgments

This research was supported by the Japan Society for the Promotion of Science JSPS (KAKENHI Grant Nos. 17H06130, 18K03704) and the Joint Research Program of the Institute of Low Temperature Science, Hokkaido University (Grant Nos. 21G024, 20G033). AE was supported by the Netherlands Organization for Scientific Research NWO (Vidi Grant No. 639.042.423). JJAB was supported by the European Research Council ERC (ERC-CoG-2014 - Proposal n\(^\circ\) 648135 MOSAIC). TT was supported by MEXT Leading Initiative for Excellent Young Researchers (Grant No. JPMXS0320200188). YT is supported by JSPS (KAKENHI Grant Nos. 20H01951, 22H04939). YT and TJLCB are supported by NAOJ ALMA Scientific Research (Grant No. 2018-09B). The ASTE telescope is operated by the National Astronomical Observatory of Japan (NAOJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Taniguchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniguchi, A., Bakx, T.J.L.C., Baselmans, J.J.A. et al. DESHIMA 2.0: Development of an Integrated Superconducting Spectrometer for Science-Grade Astronomical Observations. J Low Temp Phys 209, 278–286 (2022). https://doi.org/10.1007/s10909-022-02888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02888-5

Keywords

Navigation