Skip to main content
Log in

An Analytical Model for Optimizing the Optical Absorption of Graphene-Based Two-Dimensional Multilayer Structure

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials are promising but remain to be further investigated, with respect to their interesting usage in optoelectronic devices. These materials have far less than ideal absorption due to their thin thickness, limiting their deployment in practical optoelectronic applications. Graphene is a 2D material with honeycomb structure. Its unique and fantastic mechanical, physical electrical and optical properties make it to be an important industrial and economical material. In this work, a simple analysis is performed for the reflectance, transmittance, and absorption properties of multilayer thin film structures with graphene sandwiched in dielectric layers. Based on Maxwell’s electromagnetic wave theory and coupled Fresnel equations, we investigate how to get maximum absorption for a proper choice of media and graphene layers. Query ID="Q2" Text="Kindly check the corresponding author's affiliation is correctly identified. Numerical results show this absorption is controlled with matching thicknesses of layers, number of graphene layers, wavelength and angle of incident electromagnetic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Q. Bao, H. Zhang, B. Wang et al., Nat. Photonics 5, 411–415 (2011)

    Article  ADS  Google Scholar 

  2. L.A. Ponomarenko, R. Yang, T.M. Mohiuddin et al., Phys. Rev. Lett 102, 206603 (2009)

    Article  ADS  Google Scholar 

  3. V.M. Apalkov, T. Chakraborty, Phys. Rev. Lett 91, 126801 (2006)

    Article  ADS  Google Scholar 

  4. X. Xu, Y. Yang, L. Chen, X. Chen, T. Wu, Y. Li, B. Li, Laser Photonics Rev. 15, 2000546 (2021)

    Article  ADS  Google Scholar 

  5. X. Huang, M. Cao, D. Wang, X. Li, J. Fan, X. Li, Opt. Mat. Express 12, 811 (2022)

    Article  ADS  Google Scholar 

  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  7. A. Khaleque, H.T. Hattori, Appl. Opt. 55, 2936 (2016)

    Article  ADS  Google Scholar 

  8. X. Chen, D. Wang, T. Wang, Z. Yang, X. Zou, P. Wang, Z. Wei, A.C.S. App, Mat. Interfaces 11, 33188 (2019)

    Article  Google Scholar 

  9. H. Li, J. Tang, Y. Kang, H. Zhao, D. Fang, X. Fang, Z. Wei, App. Phys. Lett 113, 233104 (2018)

    Article  ADS  Google Scholar 

  10. J. He, P. Xu, R. Zhou, H. Li, H. Zu, J. Zhang, F. Wang, Adv. Electron. Mater. (2021) 2100997

  11. H. Li, P. Xu, D. Liu, J. He, H. Zu, J. Song, F. Wang, Nanotechnology 32, 375202 (2021)

    Article  Google Scholar 

  12. S. Xia, X. Zhai, L. Wang, S. Wen, Research 6, 692 (2018)

    Google Scholar 

  13. S. Xia, X. Zhai, L. Wang, B. Sun, J. Liu, S. Wen, Opt. Express 24, 17886 (2016)

    Article  ADS  Google Scholar 

  14. S. Xia, X. Zhai, Y. Huang, J. Liu, L. Wang, S. Wen, Opt. Lett. 42, 3052 (2017)

    Article  ADS  Google Scholar 

  15. Q. Zhang, X. Li, M.M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M.D. Turner, S. Fan, Q. Bao, M. Gu, Sci. Rep. 4, 6559 (2014)

    Article  ADS  Google Scholar 

  16. V. Brar, M. Jang, M. Sherrott, J. Lopez, H. Atwater, Nano Lett. 13, 2541 (2013)

    Article  ADS  Google Scholar 

  17. Z. Fang, S. Thongrattanasiri, A. Schlather et al., ACS Nano 7, 2388 (2013)

    Article  Google Scholar 

  18. R. Alaee, M. Farhat, C. Rockstuhl, F. Lederer, Opt. Express 20, 28017 (2012)

    Article  ADS  Google Scholar 

  19. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, H. Li, Opt. Lett. 39, 6269 (2014)

    Article  ADS  Google Scholar 

  20. Yu.V. Bludov, M.I. Vasilevskiy, N.M.R. Peres, Eur. Phys. Lett 92, 68001 (2010)

    Article  ADS  Google Scholar 

  21. M. Grande, M.A. Vincenti, T. Stomeo et al., Opt. Express 23, 21032 (2015)

    Article  ADS  Google Scholar 

  22. M. Grande, M. Vincenti, T. Stomeo et al., Opt. Express 22, 31511 (2014)

    Article  ADS  Google Scholar 

  23. J.R. Piper, S. Fan, ACS Photonics 1(4), 347 (2014)

    Article  Google Scholar 

  24. J. Liu, N. Liu, J. Li, X. Jing Li, J. Huang. Appl. Phys. Lett. 101 (2012)

  25. M. Vincenti, D. De Ceglia, M. Grande et al., Opt. Lett. 38, 3550 (2013)

    Article  ADS  Google Scholar 

  26. J. Woo, M. Kim, H. Kim, J. Jang, Appl. Phys. Lett. 104, 081106 (2014)

    Article  ADS  Google Scholar 

  27. P. Chen, M. Farhat, H. Bağcı, Nanotechnology 26, 164002 (2015)

    Article  ADS  Google Scholar 

  28. Y. Fan, Z. Liu, F. Zhang et al., Sci. Rep. 5, 13956 (2015)

    Article  ADS  Google Scholar 

  29. M. Jang, V. Brar, M. Sherrott et al., Phys. Rev. B 90, 165409 (2014)

    Article  ADS  Google Scholar 

  30. G. Zheng, H. Zhang, L. Xu, Y. Liu, Opt. Lett. 41, 2274 (2016)

    Article  ADS  Google Scholar 

  31. G. Pirruccio, L. Martı ´n Moreno, G. Lozano, and J. Go´mez Rivas, ACS Nano 7(2013) 4810

  32. N. Wang, L. Bu, Y. Chen et al., App. Phys. Express 10, 015102 (2017)

    Article  ADS  Google Scholar 

  33. J. Sun, Y. Yang, D. Zhang et al., Opt. Communications 440, 234 (2019)

    Article  ADS  Google Scholar 

  34. N.L. Rangel, J.M. Seminario, J. Chem. Phys. 132, 125102 (2010)

    Article  ADS  Google Scholar 

  35. K. Hasanirokh, H. Mohammadpour, A. Phirouznia, Physica E 56, 227–230 (2014)

    Article  ADS  Google Scholar 

  36. G. Zhou, X. Zhou, Y. Song, D. Xie, L. Wang, G. Yan, H. Wang, Int. J. Remote Sens. 42, 3731 (2021)

    Article  Google Scholar 

  37. C. Hagglund, S. P. Apell and B. Kasemo, Nano Lett. 10 (2010) 3135-3141. Addition in Nano. Lett 11 (2011) 915

  38. E.F.C. Driessen, F.R. Braakman, E.M. Reiger, S.N. Dorenbos, V. Zwiller, M.J.A. de Dood, Eur. Phys. J. Appl. Phys. 47, 10701 (2009)

    Article  ADS  Google Scholar 

  39. E.F.C. Driessen, M.J.A. de Dood, Appl. Phys. Lett. 94, 171109 (2009)

    Article  ADS  Google Scholar 

  40. M. Laroche, S. Albaladejo, R. Gomez-Medina, J.J. Saenz, Phys. Rev. B 74, 245422 (2006)

    Article  ADS  Google Scholar 

  41. F.J. Garcia de Abajo, Rev. Mod. Phys. 79, 1267–1290 (2007)

    Article  ADS  Google Scholar 

  42. C. Hagglund, S.P. Apell, Opt. Express 18, 343–356 (2010)

    Article  ADS  Google Scholar 

  43. S. Thongrattanasiri, F.H.L. Koppens, F.J. Garcia de Abajo, Phys. Rev. Lett. 108, 047401 (2012)

    Article  ADS  Google Scholar 

  44. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-VCH Verlag GmbH & Co. KGaA (2004)

  45. J.C. Quail, J.G. Rako, H.J. Simon, Opt. Lett 8, 377–379 (1983)

    Article  ADS  Google Scholar 

  46. S. P. Apell, G. W. Hanson and C. Hägglund, arxiv: 1201.3071

  47. Q. Li, J. Lu, P. Gupta, and M. Qiu, Adv. Opt. Mater (2019) 1900595

  48. V. Yu, M. Hilke, Appl. Phys. Lett. 95, 151904 (2009)

    Article  ADS  Google Scholar 

  49. M. Bruna, S. Borini, Appl. Phys. Lett. 94, 31901 (2009)

    Article  Google Scholar 

  50. J.W. Weber, V.E. Calado, M.C.M. van de Sanden, Appl. Phys. Lett. 97, 091904 (2010)

    Article  ADS  Google Scholar 

  51. Q. Ye, J. Wang, Z. Liu et al., Appl. Phys. Lett. 102, 021912 (2013)

    Article  ADS  Google Scholar 

  52. L. Sun, Y. Zhang, Y. Wang et al., Nanoscale 10, 1759 (2018)

    Article  Google Scholar 

  53. J. Wang, L. Yang, Z. Hu, W. He, G. Zheng, IEEE Photonics Technol. Lett. 31, 561 (2019)

    Article  ADS  Google Scholar 

  54. Z. Xu, Q. Li, K. Du, S. Long, Y. Yang, X. Cao, H. Luo, H. Zhu, P. Ghosh, W. Shen, and M. Qiu, Laser & Photonics Rev. (2019) 1900162

  55. A. Kumar, G. Sachdeva, R. Pandey, and S. P. Karna Appl. Phys. Lett. 116, 263102 (2020)

    Article  ADS  Google Scholar 

  56. L. Xu, W.Q. Huang, W. Hu, K. Yang, B.X. Zhou, A. Pan, G.F. Huang, Chem. Mater. 29, 5504 (2017)

    Article  Google Scholar 

  57. J. Liu, S. Mao, S. Song, L. Huang, L. A. Belfiore, J. Tang, J. Alloys Compounds, (2021) 884

  58. J. Yu, B. Ma, A. Ouyang, P. Ghosh, H. Luo, A. Pattanayak, S. Kaur, M. Qiu, P. Belov, Q. Li, Optica 8, 1290 (2021)

    Article  ADS  Google Scholar 

  59. H. Li, Y. Zhang, Y. Tai, X. Zhu, X. Qi, L. Zhou, H. Lan, Opt. Laser Technol. 148, 107717 (2022)

    Article  Google Scholar 

  60. H. Li, Z. Li, N. Li, X. Zhu, Y. Zhang, L. Sun, H. Lan, Electric-Field-Driven Jet. Small (Weinheim an der Bergstrasse, Germany), (2022) e2107811

  61. Ch. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, Sh. Qin, Zh. Zhu, Nano Mat. 8, 1033 (2018)

    Google Scholar 

  62. X. Liu, X.W. Zhang, Z.G. Yin, J.H. Meng, H.L. Gao, L.Q. Zhang et al., Appl. Phys. Lett. 105, 183901 (2014)

    Article  ADS  Google Scholar 

  63. E. Shi, H. Li, L. Yang, L. Zhang, Z. Li, P. Li et al., Nano Lett. 13, 1776–1781 (2013)

    Article  ADS  Google Scholar 

  64. L. Yang, X. Yu, M. Xu, H. Chen, D. Yang, J. Mater. Chem. A 2, 16877–16883 (2014)

    Article  Google Scholar 

  65. Z. Xu, H. Luo, H. Zhu, Y. Hong, W. Shen, J. Ding, S. Kaur, P. Ghosh, M. Qiu, Q. Li, Nano Lett. 21, 5269 (2021)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

K. H carried out the calculation and wrote the manuscript.

Corresponding author

Correspondence to Kobra Hasanirokh.

Ethics declarations

Conflict of interest

The author declares no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanirokh, K. An Analytical Model for Optimizing the Optical Absorption of Graphene-Based Two-Dimensional Multilayer Structure. J Low Temp Phys 210, 297–309 (2023). https://doi.org/10.1007/s10909-022-02853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02853-2

Keywords

Navigation