Skip to main content
Log in

A Study on \(\hbox {PbMoO}_4\) Phonon-Scintillation Detection with MMC Readouts for a Neutrinoless Double Beta Decay Search

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

A Correction to this article was published on 07 October 2022

This article has been updated

Abstract

The advanced Mo-based rare process experiment (AMoRE) is an international project searching for the neutrinoless double beta (\(0\nu \beta \beta \)) decay of \(^{100}\)Mo using low-temperature calorimetric detection of heat and light signals based on magnetic microcalorimeter (MMC) readouts. \(\hbox {Li}_2\hbox {MoO}_4\) crystals have been considered as the main target crystals for the second phase of the AMoRE project, which aims to use 100 kg of \(^{100}\)Mo. However, the hygroscopicity of \(\hbox {Li}_2\hbox {MoO}_4\) requires moistureless processes during surface treatment, storage, detector assembly, and installation. \(\hbox {PbMoO}_4\) crystals are nonhygroscopic and exhibit high scintillation efficiency, often leading to high particle discrimination power in the phonon channel via pulse-shape analysis and light/heat ratio variation. A low-temperature detector setup with a 1 \(\hbox {cm}^3\) cubic crystal of \(\hbox {PbMoO}_4\) was prepared for simultaneous heat and light detection based on MMC readouts. After study of internal background control using archeological Pb, \(\hbox {PbMoO}_4\) crystal can be a promising candidate crystal. We present a feasibility study of \(\hbox {PbMoO}_4\) crystals for a \(0\nu \beta \beta \) experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. J. Schechter, J.W.F. Valle, Phys. Rev. D 25, 2951–2954 (1982). https://doi.org/10.1103/PhysRevD.25.2951

    Article  ADS  Google Scholar 

  2. C. Alduino et al., Eur. Phys. J. C 77, 13 (2017). https://doi.org/10.1140/epjc/s10052-016-4498-6

    Article  ADS  Google Scholar 

  3. E. Armengaud et al., Phys. Rev. Lett. 126, 181802 (2021). https://doi.org/10.1103/PhysRevLett.126.181802

    Article  ADS  Google Scholar 

  4. M. Agostini et al., Phys. Rev. Lett. 125, 252502 (2020). https://doi.org/10.1103/PhysRevLett.125.252502

    Article  ADS  Google Scholar 

  5. A. Gando et al., Phys. Rev. Lett. 122, 192501 (2019). https://doi.org/10.1103/PhysRevLett.122.192501

    Article  ADS  Google Scholar 

  6. V. Alenkov et al., Eur. Phys. J. C 79, 791 (2019). https://doi.org/10.1140/epjc/s10052-019-7279-1

    Article  ADS  Google Scholar 

  7. J. Kotila, F. Iachello, Phys. Rev. C 85, 034316 (2012). https://doi.org/10.1103/PhysRevC.85.034316

    Article  ADS  Google Scholar 

  8. V. Alenkov et al., “Technical design report for the amore \(0\nu \beta \beta \) decay search experiment,” (2015). arXiv:1512.05957

  9. Y.H. Kim, S.J. Lee, B. Yang, Supercond. Sci. Technol. 35, 063001(2022). https://doi.org/10.1088/1361-6668/ac6a1c

  10. H.J. Kim et al., Cryst. Res. Technol. 54, 1900079 (2019). https://doi.org/10.1002/crat.201900079

    Article  Google Scholar 

  11. H.L. Kim et al., Nucl. Instr. Meth. A 954, 162107 (2020). https://doi.org/10.1016/j.nima.2019.04.061

    Article  Google Scholar 

  12. S.G. Kim et al., IEEE Trans. Appl. Supercond. 31, 1–5 (2021). https://doi.org/10.1109/TASC.2021.3066179

    Article  Google Scholar 

  13. S.Y. Oh et al., Supercond. Sci. Technol. 30, 084005 (2017). https://doi.org/10.1088/1361-6668/aa7431

    Article  ADS  Google Scholar 

  14. L. Gironi, J. Low Temp. Phys. 167, 504–509 (2012).. https://doi.org/10.1007/s10909-012-0478-x

    Article  ADS  Google Scholar 

  15. H.L. Kim et al., J. Low Temp. Phys. 199, 1082–1088 (2020). https://doi.org/10.1007/s10909-019-02291-7

    Article  ADS  Google Scholar 

  16. V.N. Shlegel et al., J. Instrum. 12, C08011 (2017). https://doi.org/10.1088/1748-0221/12/08/c08011

    Article  Google Scholar 

  17. L. Pattavina et al., Eur. Phys. J. A 55, 127 (2019). https://doi.org/10.1140/epja/i2019-12809-0

    Article  ADS  Google Scholar 

  18. L. Pattavina et al., Eur. Phys. J. A 56, 38 (2020). https://doi.org/10.1140/epja/s10050-020-00050-x

    Article  ADS  Google Scholar 

  19. A. Hedayat, A. Khounsary, F. Mashayek, Proc. SPIE 8502, 85020O (2012). https://doi.org/10.1117/12.929362

    Article  ADS  Google Scholar 

  20. D. McCammon, Cryogenic particle detection (Springer, Berlin, 2005). https://doi.org/10.1007/10933596_1

    Book  Google Scholar 

  21. Y.N. Yuryev et al., Nucl. Instr. Meth. A 635, 82–85 (2011). https://doi.org/10.1016/j.nima.2011.01.127

    Article  ADS  Google Scholar 

  22. G.B. Kim, J. Low Temp. Phys. 199, 1004–1011 (2020). https://doi.org/10.1007/s10909-020-02365-x

    Article  ADS  Google Scholar 

  23. V. Babin et al., Radiat. Meas. 38, 533–537 (2004). https://doi.org/10.1016/j.radmeas.2004.02.005

    Article  Google Scholar 

  24. J.Y. Lee et al., J. Korean Phys. Soc. 71, 928–933 (2017). https://doi.org/10.3938/jkps.71.928

    Article  ADS  Google Scholar 

  25. H.L. Kim et al., IEEE. T. Nucl. Sci. 65, 766–770 (2018). https://doi.org/10.1109/TNS.2017.2788898

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Institute for Basic Science (IBS) under project codes IBS-R016-D1 and IBS-R016-A2, and the Ministry of Science and Higher Education of the Russian Federation N121031700314-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the figure 3 caption the following words were removed inadvertently "% rising and falling and 50% falling positions". However, the error in the figure 3 caption is corrected.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.L., So, J.H., Kim, Y.H. et al. A Study on \(\hbox {PbMoO}_4\) Phonon-Scintillation Detection with MMC Readouts for a Neutrinoless Double Beta Decay Search. J Low Temp Phys 209, 409–416 (2022). https://doi.org/10.1007/s10909-022-02824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02824-7

Keywords

Navigation