Skip to main content
Log in

Superconductivity Versus Magnetism in the Amorphous Palladium “Ides”: Pd1−c(H/D/T)c

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In general, conventional superconductivity and magnetism are competing phenomena. In some alloys this competition is a function of the concentration of the elements. Here we show that in the palladium alloys Pd\(_{1-c}\)(H/D/T)\(_{c}\) (Pd-ides) the increase in the concentration c of the ides: hydrogen, deuterium, tritium (H/D/T), lowers the predicted magnetism of amorphous palladium (a-Pd) gradually, allowing superconductivity to appear for \( c \approx 40\%\). This magnetism explains why superconductivity does not manifest for smaller values of c (\(c \le 40\%\)) in these Pd alloys. These results validate indirectly our predicted magnetism in the amorphous/porous palladium (a/p-Pd) providing a different strategy to explore the phase diagram of competing magnetic and superconducting phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request

Code Availability

Materials Studio is a licensed software acquired from Dassault Systèmes BIOVIA.

References

  1. I. Rodríguez, R.M. Valladares, D. Hinojosa-Romero, A. Valladares, A.A. Valladares, Emergence of magnetism in bulk amorphous palladium. Phys. Rev. B 100(2), 024422 (2019). https://doi.org/10.1103/PhysRevB.100.024422

    Article  ADS  Google Scholar 

  2. T. Skoskiewicz, Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen systems. Phys. Status Solidi (A) 11(2), 123–126 (1972). https://doi.org/10.1002/pssa.2210110253

    Article  ADS  Google Scholar 

  3. R. Kleiner, W. Buckel, Superconductivity: An Introduction, 3 updated. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016)

    Google Scholar 

  4. B. Stritzker, W. Buckel, Superconductivity in the palladium-hydrogen and the palladium-deuterium systems. Z. Phys, 257(1), 1–8 (1972). https://doi.org/10.1007/BF01398191

    Article  ADS  Google Scholar 

  5. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108(5), 1175–1204 (1957). https://doi.org/10.1103/PhysRev.108.1175

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. J.E. Schirber, C.J.M. Northrup, Concentration dependence of the superconducting transition temperature in PdH\(_x\) and PdD\(_x\). Phys. Rev. B 10(9), 3818–3820 (1974). https://doi.org/10.1103/PhysRevB.10.3818

    Article  ADS  Google Scholar 

  7. J.E. Schirber, J.M. Mintz, W. Wall, Superconductivity of palladium tritide. Solid State Commun. 52(10), 837–838 (1984). https://doi.org/10.1016/0038-1098(84)90251-5

    Article  ADS  Google Scholar 

  8. D.A. Papaconstantopoulos, B.M. Klein, E.N. Economou, L.L. Boyer, Band structure and superconductivity of PdD\(_x\) and PdH\(_x\). Phys. Rev. B 17(1), 141–150 (1978). https://doi.org/10.1103/PhysRevB.17.141

    Article  ADS  Google Scholar 

  9. D. Fay, J. Appel, Possibility of triplet pairing in palladium. Phys. Rev. B 16(5), 2325–2328 (1977). https://doi.org/10.1103/PhysRevB.16.2325

    Article  ADS  Google Scholar 

  10. K.H. Bennemann, J.W. Garland, Theory for superconductivity in Pd-H and Pd-D systems. Z. Phys. 260(5), 367–374 (1973). https://doi.org/10.1007/BF01397961

    Article  ADS  Google Scholar 

  11. D.A. Papaconstantopoulos, B.M. Klein, Superconductivity in the Palladium-Hydrogen System. Phys. Rev. Lett. 35(2), 110–113 (1975). https://doi.org/10.1103/PhysRevLett.35.110

    Article  ADS  Google Scholar 

  12. F.J. Pinski, P.B. Allen, W.H. Butler, Electron-phonon contribution to electrical resistivity and superconducting “p -Wave’’ transition temperature of Pd. Phys. Rev. Lett. 41(6), 431–434 (1978). https://doi.org/10.1103/PhysRevLett.41.431

    Article  ADS  Google Scholar 

  13. G. Gladstone, M.A. Jensen, J.R. Schrieffer, Electron–electron interactions in the normal state, in Superconductivity, vol. 2, ed. by R.D. Parks (Dekker, New York, 1969), pp.682–706

    Google Scholar 

  14. V.L. Moruzzi, P.M. Marcus, Magnetism in fcc rhodium and palladium. Phys. Rev. B 39(1), 471–474 (1989). https://doi.org/10.1103/PhysRevB.39.471

    Article  ADS  Google Scholar 

  15. B. Sampedro, P. Crespo, A. Hernando, R. Litrán, J.C. Sánchez López, C. López Cartes, A. Fernandez, J. Ramírez, J. González Calbet, M. Vallet, Ferromagnetism in fcc twinned 2.4 nm size Pd nanoparticles. Phys. Rev. Lett. 91(23), 237203 (2003). https://doi.org/10.1103/PhysRevLett.91.237203

    Article  ADS  Google Scholar 

  16. D. Mendoza, F. Morales, R. Escudero, J. Walter, Magnetization studies in quasi two-dimensional palladium nanoparticles encapsulated in a graphite host. Phys. Condens. Matter 11(28), 317–322 (1999). https://doi.org/10.1088/0953-8984/11/28/101

    Article  ADS  Google Scholar 

  17. A.A. Valladares, A new approach to the ab initio generation of amorphous semiconducting structures. Electronic and vibrational studies, in Glass Materials Research Progress. ed. by J.C. Wolf, L. Lange (Nova Science Publishers, New York, 2008), pp. 61–123. OCLC: 213375899

  18. C. Romero, J. Noyola, U. Santiago, R. Valladares, A. Valladares, A. Valladares, A new approach to the computer modeling of amorphous nanoporous structures of semiconducting and metallic materials: a review. Materials 3(1), 467–502 (2010). https://doi.org/10.3390/ma3010467

    Article  ADS  Google Scholar 

  19. A.A. Valladares, J.A. Díaz-Celaya, J. Galván-Colín, L.M. Mejía-Mendoza, J.A. Reyes-Retana, R.M. Valladares, A. Valladares, F. Alvarez-Ramirez, D. Qu, J. Shen, New approaches to the computer simulation of amorphous alloys: a review. Materials 4(4), 716–781 (2011). https://doi.org/10.3390/ma4040716

    Article  ADS  Google Scholar 

  20. T. Masumoto, T. Fukunaga, K. Suzuki, Abstract of topical conf. on the atomic scale structure of amophous solids. Bull. Am. Phys. Soc. 23, 467 (1978)

    Google Scholar 

  21. Y. Waseda, The Structure of Non-crystalline Materials: Liquids and Amorphous Solids (McGraw-Hill International Book Co., New York, 1980)

    Google Scholar 

  22. X. Yang, H. Li, R. Ahuja, T. Kang, W. Luo, Formation and electronic properties of palladium hydrides and palladium–rhodium dihydride alloys under pressure. Sci. Rep. 7(1), 3520 (2017). https://doi.org/10.1038/s41598-017-02617-z

    Article  ADS  Google Scholar 

  23. A.J. Dekker, Solid State Physics (Macmillan, London, 1957)

    Google Scholar 

  24. B. Stritzker, Superconductivity of disordered palladium. J. Phys. Lett. 39(21), 397–398 (1978). https://doi.org/10.1051/jphyslet:019780039021039700

    Article  Google Scholar 

  25. B. Stritzker, Superconductivity in irradiated palladium. Phys. Rev. Lett. 42(26), 1769–1773 (1979). https://doi.org/10.1103/PhysRevLett.42.1769

    Article  ADS  Google Scholar 

  26. F.D. Manchester, A. San-Martin, J.M. Pitre, The H–Pd (hydrogen–palladium) system. JPE 15(1), 62–83 (1994). https://doi.org/10.1007/bf02667685

    Article  Google Scholar 

  27. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Zeitschrift für Kristallographie Cryst. Mater. 220(5/6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075

    Article  ADS  Google Scholar 

  28. Dassault Systèmes BIOVIA, Materials Studio 2016: Forcite. CASTEP (Dassault Systèmes BIOVIA, 2016)

  29. R.D. Johnson, Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database 101 (National Institute of Standards and Technology, 2002). https://doi.org/10.18434/T47C7Z

  30. Z. Mata-Pinzón, A.A. Valladares, R.M. Valladares, A. Valladares, Superconductivity in bismuth. A new look at an old problem. PLoS ONE 11(1), 0147645 (2016). https://doi.org/10.1371/journal.pone.0147645

    Article  Google Scholar 

Download references

Acknowledgements

I.R. thanks DGAPA-UNAM for the postdoctoral fellowship. D.H.R. acknowledges Consejo Nacional de Ciencia y Tecnología (CONACyT) for supporting his graduate studies. A.A.V., R.M.V., and A.V. thank DGAPA-UNAM for continued financial support to carry out research project under Grant No. IN116520. M.T. Vázquez and O. Jiménez provided the information requested. A. López and A. Pompa provided technical support and maintenance of the computing unit at IIM-UNAM. Simulations were partially carried out in the Computing Center of DGTIC-UNAM.

Funding

Financial support was recieved from DGAPA-UNAM under Grant No. IN116520.

Author information

Authors and Affiliations

Authors

Contributions

AAV, AV and RMV conceived this research and designed it with the participation of IR and DHR IR did all the simulations. All authors discussed and analyzed the results. AAV wrote the first draft and the other authors enriched the manuscript.

Corresponding author

Correspondence to Ariel A. Valladares.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to Participate

Not applicable.

Consent for Publication

The authors gave their consent for the publication of this manuscript.

Ethics Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, I., Valladares, R.M., Valladares, A. et al. Superconductivity Versus Magnetism in the Amorphous Palladium “Ides”: Pd1−c(H/D/T)c. J Low Temp Phys 209, 232–243 (2022). https://doi.org/10.1007/s10909-022-02807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02807-8

Keywords

Navigation