Skip to main content
Log in

On Bose–Einstein Condensation and Unruh–Hawking Radiation from a Quantum Optical Perspective

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The use of quantum optical/laser physics techniques yields interesting insights into Bose–Einstein condensation and Unruh–Hawking radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.C. Crooker, B. Hebral, E.N. Smith, Y. Takano, J.D. Reppy, Superfluidity in a dilute bose gas. Phys. Rev. Lett. 51, 666 (1983)

    Article  ADS  Google Scholar 

  2. M.H.W. Chan, K.I. Blum, S.Q. Murphy, G.K.S. Wong, J.D. Reppy, Disorder and the superfluid transition in liquid 4He. Phys. Rev. Lett. 61, 1950 (1988)

    Article  ADS  Google Scholar 

  3. P.A. Crowell, F.W. Van Keuls, J.D. Reppy, Superfluid-insulator transition in 4He films adsorbed in Vycor Glass. Phys. Rev. Lett. 75, 1106 (1995)

    Article  ADS  Google Scholar 

  4. R.J. Glauber, in Quantum Optics and Electronics, Les Houches, 1964, ed. by C. De Witt, A. Blandin and C. Cohen Tannoudji (Gordon and Breach, New York, 1965), p. 63

  5. M.O. Scully, W.E. Lamb Jr., Quantum theory of an optical maser. Phys. Rev. Lett. 16, 853 (1966)

    Article  ADS  Google Scholar 

  6. M.O. Scully, W.E. Lamb Jr., Quantum theory of an optical maser. I. General theory. Phys. Rev. 159, 208 (1967)

    Article  ADS  Google Scholar 

  7. I.I. Arkhipov, A. Miranowicz, O. Di Stefano, R. Stassi, S. Savasta, F. Nori, S.K. Özdemir, Scully-Lamb quantum laser model for parity-time-symmetric whispering-gallery microcavities: gain saturation effects and nonreciprocity. Phys. Rev. A 99, 053806 (2019)

    Article  ADS  Google Scholar 

  8. V. DeGiorgio, M.O. Scully, Analogy between the laser threshold region and a second-order phase transition. Phys. Rev. 2, 1170 (1970)

    Article  ADS  Google Scholar 

  9. M.O. Scully, Condensation of N bosons and the laser phase transition analogy. Phys. Rev. Lett. 82, 3927 (1999)

    Article  ADS  Google Scholar 

  10. V..V. Kocharovsky, M..O. Scully, S..Y. Zhu, M..S.. Zubairy, Condensation of N bosons. II. Nonequilibrium analysis of an ideal Bose gas and the laser phase-transition analogy. Phys. Rev. A 61, 023609 (2000)

    Article  ADS  Google Scholar 

  11. A.N. Jordan, C.H.R. Ooi, A.A. Svidzinsky, Fluctuation statistics of mesoscopic Bose-Einstein condensates: reconciling the master equation with the partition function to reexamine the Uhlenbeck-Einstein dilemma. Phys. Rev. A 74, 032506 (2006)

    Article  ADS  Google Scholar 

  12. M. Wilkens, C. Weiss, Particle number fluctuations in an ideal Bose gas. J. Mod. Opt. 44, 1801 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  13. M.B. Christensen, T. Vibel, A.J. Hilliard, M.B. Kruk, K. Pawlowski, D. Hryniuk, K. Rzazewski, M.A. Kristensen, J.J. Arlt, Observation of microcanonical atom number fluctuations in a Bose-Einstein condensate. Phys. Rev. Lett. 126, 153601 (2021)

    Article  ADS  Google Scholar 

  14. M.O. Scully, S. Fulling, D.M. Lee, D.N. Page, W.P. Schleich, A.A. Svidzinsky, Quantum optics approach to radiation from atoms falling into a black hole. Proc. Natl. Acad. Sci. USA 115, 8131 (2018)

    Article  ADS  Google Scholar 

  15. S.A. Fulling, Nonuniqueness of canonical field quantization in Riemannian Space-Time. Phys. Rev. D 7, 2850 (1973)

    Article  ADS  Google Scholar 

  16. W.G. Unruh, Notes on black hole evaporation. Phys. Rev. D. 14, 870 (1976)

    Article  ADS  Google Scholar 

  17. P. Davies, Scalar production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609 (1975)

    Article  ADS  Google Scholar 

  18. B.S.DeWitt, in General Relativity: An Einstein Centenary Survey, ed. by S.W. Hawking and W. Israel (Cambridge University Press, Cambridge, 1979)

  19. W.G. Unruh, R.M. Wald, What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D 29, 1047 (1984)

    Article  ADS  Google Scholar 

  20. R. Müller, Decay of accelerated particles. Phys. Rev. D 56, 953 (1997)

    Article  ADS  Google Scholar 

  21. D.A.T. Vanzella, G.E.A. Matsas, Decay of accelerated protons and the existence of the Fulling-Davies-Unruh effect. Phys. Rev. Lett. 87, 151301 (2001)

    Article  ADS  Google Scholar 

  22. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. A.A. Svidzinsky, J.S. Ben-Benjamin, S.A. Fulling, D.N. Page, Excitation of an atom by a uniformly accelerated mirror through virtual transitions. Phys. Rev. Lett. 121, 071301 (2018)

    Article  ADS  Google Scholar 

  24. H.E. Camblong, A. Chakraborty, C.R. Ordóñez, Near-horizon aspects of acceleration radiation by free fall of an atom into a black hole. Phys. Rev. D 102, 085010 (2020)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-20-1-0366 DEF), the Office of Naval Research (Grants No. N00014-20-1-2184), the Robert A. Welch Foundation (Grant No. A-1261), the National Science Foundation (Grant No. PHY-2013771), and Natural Science Foundation of Fujian (Grant No. 2021I0025), and W.U. thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant 5-80441) and also thanks the TAMU Hagler Institute for Advanced Studies for their support, and the Humbolt Gesellshaft of Germany, and the Helmholtz Stifung for additional support while some of the research was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Svidzinsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scully, M.O., Svidzinsky, A. & Unruh, W. On Bose–Einstein Condensation and Unruh–Hawking Radiation from a Quantum Optical Perspective. J Low Temp Phys 208, 160–171 (2022). https://doi.org/10.1007/s10909-022-02703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02703-1

Keywords

Navigation