Skip to main content
Log in

Influence of the LO Phonon Effect on the Transition Rate and the Spontaneous Emission Rate in Donor-Center Quantum Dot with Spherical Gaussian Confinement Potential

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Based on Lee-Low-Pines transformation, the longitudinal optical (LO) phonon effect in a donor-center quantum dot with a spherical Gaussian confinement potential is studied. The energy expressions of the ground state and the first excited state are derived by using a Pekar-type variational method, and then, a superposition state of the two-level system is constructed. On the basis of Fermi Golden Rule, two kinds of the decoherence of superposition states caused by LO phonon effects are discussed, which are the spontaneous emission of LO phonon and the quantum transition from the ground state to the excited state by absorbing a LO phonon, respectively. The numerical results show that for the former, the superposition state can be suppressed by increasing the electron–phonon coupling constant, the dielectric constant ratio, or the dispersion coefficient. For the latter, it can be used to suppress the decoherence of the superposition state by increasing the dielectric constant ratio or decreasing the electron–phonon coupling constant, or using the low-temperature environment. This work enriches and improves the theoretical scheme to suppress the decoherence of a semiconductor quantum dot qubit caused by LO phonon-related effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11

Similar content being viewed by others

References

  1. S.S. Li, X.G. Wu, H.Z. Zheng, Physics 33, 404 (2004)

    Google Scholar 

  2. S.S. Li, J.B. Xia, F.H. Yang, Z.C. Niu, S.L. Feng, H.Z. Zheng, J. Appl. Phys. 90, 6151 (2001)

    Article  ADS  Google Scholar 

  3. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  4. S. Varwig, A. René, A. Greilich, D.R. Yakovlev, Phys. Rev. B 87, 115307 (2013)

    Article  ADS  Google Scholar 

  5. C. Rajamohan, A.M. Jasper, D. Reuben, P. Nithiananthi, K. Jayakumar, J. Math Chem. 44, 743 (2008)

    Article  MathSciNet  Google Scholar 

  6. J.L. Zhu, J.H. Zhao, J.J. Xiong, J. Phys. Condens. Matter 6, 5097 (1994)

    Article  ADS  Google Scholar 

  7. S. Kang, J. Li, T.Y. Shi, J. Phys. B At. Mol. Opt. Phys. 39, 6491 (2006)

    Article  Google Scholar 

  8. J.L. Zhu, X. Chen, Phys. Rev. B 50, 4497 (1994)

    Article  ADS  Google Scholar 

  9. Y. Sun, Z.H. Ding, J.L. Xiao, J. Low Temp. Phys. 177, 151 (2014)

    Article  ADS  Google Scholar 

  10. Y. Sun, Z.H. Ding, J.L. Xiao, J. Electron. Mater. 46, 439 (2017)

    Article  ADS  Google Scholar 

  11. W. Xiao, J.L. Xiao, Int. J. Theor. Phys. 55, 2936 (2016)

    Article  Google Scholar 

  12. A.J. Fotue, M.F.C. Fobasso, S.C. Kenfack, M. Tiotsop, J.R.D. Djomou, C.M. Ekosso, G.P. Nguimeya, J.E. Danga, R.M.K. Tsiaze, L.C. Fai, Eur. Phys. J. Plus. 131, 205 (2016)

    Article  Google Scholar 

  13. Wuyunqimuge, C. Han, Eerdunchaolu, Acta Phys. Sin. 68, 247803 (2019). ((in Chinese))

    Article  Google Scholar 

  14. W. Qiu, J.L. Xiao, C.Y. Cai, J. Low Temp. Phys. 198, 233 (2020)

    Article  ADS  Google Scholar 

  15. Y. Sun, J.L. Xiao, Eur. Phys. J. Plus. 135, 592 (2020)

    Article  Google Scholar 

  16. X.F. Bai, Y. Zhang, Eerdunchaolu, Indian J. Phys. 95, 1783 (2021)

    Article  ADS  Google Scholar 

  17. W.F. Xie, Solid State Commun. 127, 401 (2003)

    Article  ADS  Google Scholar 

  18. J. Gu, J.J. Liang, Acta Phys. Sin. 54, 5335 (2005). ((in Chinese))

    Article  Google Scholar 

  19. A. Chatterjee, J. Phys. A Math. Gen. 18, 2403 (1985)

    Article  ADS  Google Scholar 

  20. A. Chatterjee, Phys. Rep. 186, 249 (1990)

    Article  ADS  Google Scholar 

  21. W. Xie, Physica B 403, 2828 (2008)

    Article  ADS  Google Scholar 

  22. W. Xie, Phys. Status Solidi (b) 245, 101 (2008)

    Article  ADS  Google Scholar 

  23. A. Boda, A. Chatterjee, Physica E 45, 36 (2012)

    Article  ADS  Google Scholar 

  24. A. Boda, A. Chatterjee, AIP Conference Proceedings 1665, 120035 (2015)

  25. R.S.D. Bella, K. Navaneethakrishnan, Solid State Comm. 130, 773 (2004)

    Article  ADS  Google Scholar 

  26. S. Kang, J. Li, T.Y. Shi, J. Phys. B At. Mol. Opt. Phys. 39, 3491 (2006)

    Article  ADS  Google Scholar 

  27. L.D. Landau, S.I. Pekar, Zh. Eksp, Teor. Fiz. 18, 419 (1948)

    Google Scholar 

  28. S.I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954)

    MATH  Google Scholar 

  29. T.D. Lee, F.M. Low, S.D. Pines, Phys. Rev. 90, 297 (1953)

    Article  MathSciNet  ADS  Google Scholar 

  30. A.J. Fotue, S.C. Kenfack, M. Tiotsop, N. Issofa, M.P.T. Djemmo, A.V. Wirngo, H. Fotsin, L.C. Fai, Eur. Phys. J. Plus. 131, 75 (2016)

    Article  Google Scholar 

  31. Y.F. Yu, J.L. Xiao, J.W. Yin, Z.W. Wang, Chin. Phys. B 17, 2236 (2008)

    Article  ADS  Google Scholar 

  32. M.A. Brummell, R.J. Nicholas, M.A. Hopkins, J.J. Harris, C.T. Foxon, Phys. Rev. Lett. 58, 77 (1987)

    Article  ADS  Google Scholar 

  33. J.W. Yin, J.L. Xiao, Y.F. Yu, Z.W. Wang, Acta Phys. Sin. 57, 2695 (2008). ((in Chinese))

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, W. Influence of the LO Phonon Effect on the Transition Rate and the Spontaneous Emission Rate in Donor-Center Quantum Dot with Spherical Gaussian Confinement Potential. J Low Temp Phys 207, 42–57 (2022). https://doi.org/10.1007/s10909-022-02699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02699-8

Keyword

Navigation