Skip to main content
Log in

The State of the Art: Lightweight Cryocoolers Working in the Liquid-Helium Temperature Range

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Liquid-helium temperature is a widely used working temperature in low-temperature physics. At present, liquid-helium or low-frequency cryocoolers, including Gifford Mahon (GM) cryocoolers or GM pulse tube cryocoolers, are usually employed to obtain a cooling temperature of about 4 K. The use of closed-cycle mechanical cryocoolers to replace liquid helium and the development of mechanical cryocoolers toward lightweight are advantageous development directions for refrigeration technology, and certain progress has been made in recent years. This paper summarizes the development status of lightweight cryocoolers, including Joule–Thomson cryocoolers, high-frequency pulse tube cryocoolers, and Vuilleumier cryocoolers, which have the advantages of small size and low power consumption compared with GM-type cryocoolers. The evolutionary ideas of miniaturization, the research advances, the characteristics of different types of cryocoolers, and the future development directions are also systematically introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. H.M.I. Jaim, K. Bärner, Transient electromagnetic and heat transfer characteristics of the MgB2 superconductor in liquid helium. J. Low Temp. Phys. 172(1), 84–93 (2013)

    Article  ADS  Google Scholar 

  2. E.M. Joseph, V. Vadakkumbatt, A. Pal, A. Ghosh, High speed imaging of generation and collapse of multielectron bubbles in liquid helium. J. Low Temp. Phys. 175(1), 78–84 (2014)

    Article  ADS  Google Scholar 

  3. D.I. Bradley, R.P. Haley, S. Kafanov, M.T. Noble, G.R. Pickett, V. Tsepelin et al., Probing liquid 4He with quartz tuning forks using a novel multifrequency lock-in technique. J. Low Temp. Phys. 184(5), 1080–1091 (2016)

    Article  ADS  Google Scholar 

  4. T.R. Prisk, M.S. Bryan, P.E. Sokol, G.E. Granroth, S. Moroni, M. Boninsegni, The momentum distribution of liquid 4 He. J. Low Temp. Phys. 189(3), 158–184 (2017)

    Article  ADS  Google Scholar 

  5. A. De Waele, Basic operation of cryocoolers and related thermal machines. J. Low Temp. Phys. 164(5), 179–236 (2011)

    Article  ADS  Google Scholar 

  6. C. Alvarez-Ney, J. Labarga, M. Moratalla, J.M. Castilla, M.A. Ramos, Calorimetric measurements at low temperatures in toluene glass and crystal. J. Low Temp. Phys. 187(1–2), 182–191 (2017)

    Article  ADS  Google Scholar 

  7. B. Collaudin, N. Rando, Cryogenics in space: a review of the missions and of the technologies. Cryogenics 40(12), 797–819 (2000)

    Article  ADS  Google Scholar 

  8. M. Zheng, J. Quan, N. Wang, C. Li, M. Zhao, L. Wei et al., A brief review of dilution refrigerator development for space applications. J. Low Temp. Phys. 197(1), 1–9 (2019)

    Article  ADS  Google Scholar 

  9. X. Xi, J. Wang, L. Chen, Y. Zhou, J. Wang, Progress and challenges of sub-Kelvin sorption cooler and its prospects for space application. J. Low Temp. Phys. 199, 1363–1381 (2020)

    Article  ADS  Google Scholar 

  10. H. Cao, Refrigeration below 1 kelvin. J. Low Temp. Phys. 204(5), 175–205 (2021)

    Article  ADS  Google Scholar 

  11. V.S. Chakravarthy, R.K. Shah, G. Venkatarathnam, A review of refrigeration methods in the temperature range 4–300 k. J. Therm. Sci. Eng. Appl. 3(2), 020801 (2011)

    Article  Google Scholar 

  12. R. Radebaugh, Cryocoolers: the state of the art and recent developments. J. Phys. Condens. Matter 21(16), 164219 (2009)

    Article  ADS  Google Scholar 

  13. R.S. Bhatia, Review of spacecraft cryogenic coolers. J. Spacecr. Rocket. 39(3), 329–346 (2002)

    Article  ADS  Google Scholar 

  14. B. Wang, Z.H. Gan, A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications. Progress Aerospace Sci. 36, 6143–6170 (2013)

    Google Scholar 

  15. C. Liubiao, Z. Qiang, Z. Xiaoshuang, Z. Yuan, W. Junjie, An optical cryostat for use in Microscopy cooled by Stirling-type pulse tube cryocooler. Phys. Procedia 87, 67354–67359 (2015)

    Google Scholar 

  16. L.B. Chen, S.X. Liu, K.X. Gu, Y. Zhou, J.J. Wang, A Cryogenic Tensile Testing Apparatus for Micro-samples Cooled by Miniature Pulse Tube Cryocooler, 1st edn. (IOP Publishing, Bristol, 2015), p. 012011

    Google Scholar 

  17. W. Han, Y. Liu, F. Wan, P. Liu, X. Yi, Q. Zhan et al., Deformation behavior of austenitic stainless steel at deep cryogenic temperatures. J. Nucl. Mater. 504, 29–32 (2018)

    Article  ADS  Google Scholar 

  18. A.E. Salomonovich, T.M. Sidyakina, A.S. Khaikin, V.N. Bakun, A.A. Nikonov, V.A. Maslakov et al., Space helium refrigerator. Cryogenics 21(8), 474–478 (1981)

    Article  ADS  Google Scholar 

  19. A.H. Orlowska, T.W. Bradshaw, J. Hieatt, Development Status of a 25 K–4 K Closed-Cycle Cooler Suitable for Space Use. Cryocoolers 8 (Springer, New York, 1995), pp. 517–524

    Google Scholar 

  20. B.G. Jones, D.W. Ramsay, Qualification of a 4 K mechanical cooler for space applications. Cryocoolers 8 (Springer, New York, 1995), pp. 525–535

    Google Scholar 

  21. D.S. Glaister, W. Gully, R. Ross, P. Hendershott, E. Marquardt, V. Kotsubo, Ball Aerospace 4–6 K Space Cryocooler, 1st edn. (American Institute of Physics, College Park, 2015), pp. 632–639

    Google Scholar 

  22. D.S. Glaister, W. Gully, E. Marquardt, R. Stack, Ball Aerospace Long Life, Low Temperature Space Cryocoolers, 1st edn. (American Institute of Physics, College Park, 2004), pp. 1763–1770

    Google Scholar 

  23. M. DiPirro, D. Fixsen, A. Kogut, X. Li, J. Marquardt, P. Shirron, Design of the PIXIE cryogenic system. Cryogenics 52(4–6), 134–139 (2012)

    Article  ADS  Google Scholar 

  24. K. Narasaki, S. Tsunematsu, S. Yajima, A. Okabayashi, J. Inatani, K. Kikuchi et al., Development of Cryogenic System for SMILES, 1st edn. (American Institute of Physics, College Park, 2004), pp. 1785–1796

    Google Scholar 

  25. K. Narasaki, S. Tsunematsu, K. Ootsuka, K. Kanao, A. Okabayashi, K. Mitsuda et al., Lifetime test and heritage on orbit of coolers for space use. Cryogenics 52(4–6), 188–195 (2012)

    Article  ADS  Google Scholar 

  26. K. Otsuka, S. Tsunematsu, A. Okabayashi, K. Narasaki, R. Satoh, Test results after refurbish of cryogenic system for smiles. Cryogenics 50(9), 512–515 (2010)

    Article  ADS  Google Scholar 

  27. R. Fujimoto, K. Mitsuda, N. Yamasaki, Y. Takei, M. Tsujimoto, H. Sugita et al., Cooling system for the soft X-ray spectrometer onboard Astro-H. Cryogenics 50(9), 488–493 (2010)

    Article  ADS  Google Scholar 

  28. Y. Sato, K. Shinozaki, H. Sugita, K. Mitsuda, N.Y. Yamasaki, Y. Takei et al., Development of mechanical cryocoolers for the cooling system of the Soft X-ray Spectrometer onboard Astro-H. Cryogenics 52(4–6), 158–164 (2012)

    Article  ADS  Google Scholar 

  29. Y. Sato, K. Sawada, K. Shinozaki, H. Sugita, T. Nishibori, R. Sato et al., Development status of the mechanical cryocoolers for the soft x-ray spectrometer on board Astro-H. Cryogenics 64, 182–188 (2014)

    Article  ADS  Google Scholar 

  30. K. Shinozak, H. Sugita, Y. Sato, K. Mitsuda, T. Nakagawa, R. Fujimoto et al., Developments of 1–4 K Class Space Mechanical Coolers for New Generation Satellite Missions in JAXA (Georgia Institute of Technology, Atlanta, 2008)

    Google Scholar 

  31. Y. Sato, K. Tanaka, H. Sugita, K. Shinozaki, K. Sawada, N.Y. Yamasaki et al., Lifetime test of the 4K Joule-Thomson cryocooler. Cryogenics 116, 103306 (2021)

    Article  Google Scholar 

  32. R. Fujimoto, Y. Takei, K. Mitsuda, N.Y. Yamasaki, M. Tsujimoto, S. Koyama et al., Performance of the Helium Dewar and Cryocoolers of ASTRO-H SXS (International Society for Optics and Photonics, Bellingham, 2017), p. 99

    Google Scholar 

  33. R. Fujimoto, Y. Takei, K. Mitsuda, N.Y. Yamasaki, M. Tsujimoto, S. Koyama et al., Performance of the helium dewar and the cryocoolers of the Hitomi soft X-ray spectrometer. J. Astron. Telesc. Instrum. Syst. 4(1), 011208 (2017)

    Article  ADS  Google Scholar 

  34. G. Matt, The Advanced Telescope for High Energy Astrophysics (Wiley, New York, 2019)

    Book  Google Scholar 

  35. P. De Korte, Technology developments needed for future X-ray astronomy missions. Acta Astron. 77, 118–125 (2012)

    Article  Google Scholar 

  36. H. Sugita, T. Nakagawa, H. Murakami, A. Okamoto, H. Nagai, M. Murakami et al., Cryogenic infrared mission “JAXA/SPICA” with advanced cryocoolers. Cryogenics 46(2–3), 149–157 (2006)

    Article  ADS  Google Scholar 

  37. H. Sugita, Y. Sato, T. Nakagawa, T. Yamawaki, H. Murakami, H. Matsuhara et al., Cryogenic system design of the next generation infrared space telescope SPICA. Cryogenics 50(9), 566–571 (2010)

    Article  ADS  Google Scholar 

  38. K. Narasaki, S. Tsunematsu, K. Ootsuka, N. Watanabe, T. Matsumoto, H. Murakami et al., Development of 1 K-class mechanical cooler for SPICA. Cryogenics 44(6–8), 375–381 (2004)

    Article  ADS  Google Scholar 

  39. H. Sugita, Y. Sato, T. Nakagawa, H. Murakami, H. Kaneda, K. Enya et al., Development of mechanical cryocoolers for the Japanese IR space telescope SPICA. Cryogenics 48(5–6), 258–266 (2008)

    Article  ADS  Google Scholar 

  40. K. Shinozaki, Y. Sato, K. Tanaka, H. Sugita, N.Y. Yamasaki, T. Nakagawa et al., Lifetime Verification and Applications of the 1K-Class (Joule Thomson Cooler for Space Science Missions, New York, 2021)

    Google Scholar 

  41. R. Radebaugh, A review of pulse tube refrigeration. Adv. Cryogenic Eng. 1, 191–205 (1990)

    Google Scholar 

  42. D. Durand, D. Adachi, D. Harvey, C. Jaco, M. Michaelian, T. Nguyen et al., Mid InfraRed Instrument (MIRI) cooler subsystem design. Cryocoolers 56, 157–212 (2009)

    Google Scholar 

  43. J. Raab, R. Colbert, D. Harvey, M. Michaelian, T. Nguyen, M. Petach et al., NGST Advanced Cryocooler Technology Development Program (ACTDP) Cooler System. Cryocoolers 13 (Springer, New York, 2005), pp. 9–14

    Google Scholar 

  44. J. Raab, E. Tward, Northrop Grumman aerospace systems cryocooler overview. Cryogenics 50(9), 572–581 (2010)

    Article  ADS  Google Scholar 

  45. J. Quan, Z. Zhou, Y. Liu, J. Li, Y. Ma, J. Liang, A miniature liquid helium temperature JT cryocooler for space application. Sci. China Technol. Sci. 57(11), 2236–2240 (2014)

    Article  ADS  Google Scholar 

  46. Y. Ma, J. Quan, J. Wang, Y. Liu, J. Li, J. Liang, A closed loop 2.65 K hybrid JT cooler for future space application. Sci. China Technol. Sci. 62(2), 361–364 (2019)

    Article  ADS  Google Scholar 

  47. Z.Y. Liu, Y.X. Ma, L.J. Wei, J. Quan, Y.J. Liu, J.T. Liang. Optimization of the Counter-Flow Heat Exchangers of Space 2.5 K Hybrid Joule-Thomson Cryocooler. 2021.

  48. Z. Liu, Y. Ma, J. Quan, Y. Liu, J. Wang, J. Li et al., Development of a compact 2.17 K hybrid 4He JT cryocooler for space applications. Cryogenics 118, 103347 (2021)

    Article  Google Scholar 

  49. Y. Ma, J. Quan, J. Wang, Y. Liu, J. Li, J. Liang, Development of a space 100 mW@ 5 K closed loop JT cooler. Cryogenics 104, 102983 (2019)

    Article  Google Scholar 

  50. H. Dang, H. Tan, T. Zhang, R. Zha, J. Tan, Y. Zhao et al., A 1–2 K cryogenic system with light weight, long life, low vibration, low EMI and flexible cooling capacity for the superconducting nanowire single-photon detector. IEEE Trans. Appl. Supercond. 31(5), 1–5 (2021)

    Article  Google Scholar 

  51. H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao et al., Development of 2-K space cryocoolers for cooling the superconducting nanowire single photon detector. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019)

    Article  Google Scholar 

  52. T. Zhang, H. Dang, Investigations on a 1 K hybrid cryocooler composed of a four-stage Stirling-type pulse tube cryocooler and a Joule-Thomson cooler. Part A: Theoretical analyses and modeling. Cryogenics 116, 103282 (2021)

    Article  Google Scholar 

  53. A. De Waele, Basics of Joule-Thomson liquefaction and JT cooling. J. Low Temp. Phys. 186(5–6), 385–403 (2017)

    Article  ADS  Google Scholar 

  54. Y.W. Shen, Z.H. Gan, D.L. Liu, S.F. Chen, Y.F. Yao, Characterization of a scroll-type compressor for driving JT cryocoolers working at liquid helium temperature. IOP Conference Series: Materials Science and Engineering, 1st edn. (IOP Publishing, Bristol, 2019), p. 012056

    Google Scholar 

  55. L. Shaoshuai, S. Xinquan, D. Lei, J. Zhenhua, L. Dongli, G. Zhihua et al., Investigation of the frequency and stroke characteristics of two-stage valved linear compressor in a 4 K JT cryocooler. Appl. Therm. Eng. 176, 115432 (2020)

    Article  Google Scholar 

  56. T. Shimazaki, Performance Analysis of Pulse Tube/3He (Joule-Thomson Cryocooler for Thermometer Calibration, New York, 2021)

    Google Scholar 

  57. L. Dongli, T. Xuan, S. Xiao, G. Zhihua, Performance study on ST/JT hybrid cryocoolers working at liquid helium temperature. Phys. Procedia 67, 468–473 (2015)

    Article  ADS  Google Scholar 

  58. M. Crook, M. Hills, G. Gilley, T. Rawlings, C. Pulker, B. Green, Performance Testing of a 2K (Joule-Thomson Closed-Cycle Cryocooler, New York, 2021)

    Google Scholar 

  59. Y. Shen, D. Liu, S. Chen, Q. Zhao, L. Liu, Z. Gan et al., Study on cooling capacity characteristics of an open-cycle Joule-Thomson cryocooler working at liquid helium temperature. Appl. Therm. Eng. 166, 114667 (2020)

    Article  Google Scholar 

  60. D. Liu, Z. Gan, A. De Waele, X. Tao, Y. Yao, Temperature and mass-flow behavior of a He-4 Joule-Thomson cryocooler. Int. J. Heat Mass Transf. 109, 1094–1099 (2017)

    Article  Google Scholar 

  61. S. Liu, L. Ding, Z. Jiang, C. Dong, Y. Tang, Z. Xiang et al., Performance of a linear compressor driven JT cryocooler at liquid helium temperature. Chin. Sci. Bull. 65(8), 750–756 (2020). ((in Chinese))

    Article  Google Scholar 

  62. X. Qiao, D. Sun, Y. Qi, S. Su, H. Yu, J. Zhang et al., A two-stage Stirling cryocooler capable of providing more than 100 W cooling power at 30 K. Chin. Sci. Bull. 65(10), 955–962 (2019)

    Article  Google Scholar 

  63. X. Qiao, D. Sun, J. Zhang, Y. Qi, S. Su, C. Wang et al., Numerical study on a two-stage large cooling capacity stirling cryocooler working at 20 K. Cryogenics 118, 103334 (2021)

    Article  Google Scholar 

  64. W.J. Gully, D. Glaister, The Ball 12 K Stirling Cryocooler, 1st edn. (American Institute of Physics, College Park, 2002), pp. 1045–1052

    Google Scholar 

  65. Z. Jiang, Y. Wu, Z. Lu, P. Zhao, X. Qu, J. Jiang et al., On-orbit performance of the FY-4 GIIRS stirling cryocooler over 2 years. J. Low Temp. Phys. 203(1), 244–253 (2021)

    Article  ADS  Google Scholar 

  66. T. Nast, J. Olson, E. Roth, B. Evtimov, D. Frank, P. Champagne. Development of remote cooling systems for low-temperature, space-borne systems, in International Cryocooler Conference.

  67. T. Nast, J. Olson, P. Champagne, J. Mix, B. Evtimov, E. Roth et al., Development of a 45 K pulse tube cryocooler for superconducting electronics, 1st edn. (American Institute of Physics, College Park, 2008), pp. 881–886

    Google Scholar 

  68. L.M. Qiu, Q. Cao, X.Q. Zhi, Z.H. Gan, Y.B. Yu, Y. Liu, A three-stage Stirling pulse tube cryocooler operating below the critical point of helium-4. Cryogenics 51(10), 609–612 (2011)

    Article  ADS  Google Scholar 

  69. X.Q. Zhi, L. Han, M. Dietrich, Z.H. Gan, L.M. Qiu, G. Thummes, A three-stage Stirling pulse tube cryocooler reached 4.26 K with He-4 working fluid. Cryogenics 5, 893–896 (2013)

    Google Scholar 

  70. L.M. Qiu, L. Han, X.Q. Zhi, M. Dietrich, Z.H. Gan, G. Thummes, Investigation on phase shifting for a 4 K Stirling pulse tube cryocooler with He-3 as working fluid. Cryogenics 6, 944–949 (2015)

    Google Scholar 

  71. H. Dang, R. Zha, J. Tan, T. Zhang, J. Li, N. Li et al., Investigations on a 3.3 K four-stage Stirling-type pulse tube cryocooler. Part B: Experimental verifications. Cryogenics 105, 103015 (2020)

    Article  Google Scholar 

  72. J. Quan, Y. Liu, D. Liu, K. Zhang, J. Liang, J. Li et al., 4 K high frequency pulse tube cryocooler used for terahertz space application. Chin. Sci. Bull. 59(27), 3490–3494 (2014)

    Article  Google Scholar 

  73. J. Quan, Investigation on Influence of Non-ideal Gas Thermodynamic Processon High Frequency Multi-stage Pulse Tube Cryocooler Working at Liquid Helium Temperature (Beijing Technical Institute of Physics and Chemistry of CAS, Beijing, 2015)

    Google Scholar 

  74. C. Liubiao, W. Xianlin, L. Xuming, P. Changzhao, Z. Yuan, W. Junjie, Numerical and experimental study on the characteristics of 4 K gas-coupled Stirling-type pulse tube cryocooler. Int. J. Refrig. 88, 204–210 (2018)

    Article  Google Scholar 

  75. L. Chen, X. Wu, J. Wang, X. Liu, C. Pan, H. Jin et al., Study on a high frequency pulse tube cryocooler capable of achieving temperatures below 4 K by helium-4. Cryogenics 94, 103–109 (2018)

    Article  ADS  Google Scholar 

  76. C. Liubiao, W. Xianlin, L. Xuming et al., Study on high-frequency pulse tube cryocoolers working in liquid-helium temperature range. J. Eng. Thermophys. 41(05), 1073–1076 (2020). ((in Chinese))

    Google Scholar 

  77. L. Chen, Study on Multi-stage High-frequency Pulse Tube Cryocoolers Working at Liquid-hydrogen and Liquid-Helium Temperatures (Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 2018). (in Chinese)

    Google Scholar 

  78. X. Wu, L. Chen, X. Liu, J. Wang, Y. Zhou, J. Wang, An 80 mW/8 K high-frequency pulse tube refrigerator driven by only one linear compressor. Cryogenics 101, 7–11 (2019)

    Article  ADS  Google Scholar 

  79. X. Liu, L. Chen, X. Wu, B. Yang, J. Wang, W. Zhu et al., Attaining the liquid helium temperature with a compact pulse tube cryocooler for space applications. Sci. China Technol. Sci. 63(3), 434–439 (2020)

    Article  ADS  Google Scholar 

  80. L. Xuming, Study on Two-stage Gas-coupled High-frequency Pulse Tube Cryocooler Working at Liquid-helium Temperature (Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 2021). ((in Chinese))

    Google Scholar 

  81. T.Q. Nguyen, R. Colbert, D. Durand, C.B. Jaco, M. Michaelian, E. Tward. 10K pulse tube cooler, in International Cryocooler Conference.

  82. P.E. Bradley, R. Radebaugh, I. Garaway, E. Gerecht, Progress in the Development and Performance of a High Frequency 4 K Stirling-Type Pulse Tube Cryocooler (Georgia Institute of Technology, Atlanta, 2011)

    Google Scholar 

  83. R. Radebaugh, A.A. O’Gallagher, J.M. Gary, Secondary pulse tubes and regenerators for coupling to room-temperature phase shifters in multistage pulse tube cryocoolers. Cryocoolers 16(16), 237–247 (2011)

    Google Scholar 

  84. K.B. Wilson, D.R. Gedeon, Status of Pulse Tube Cryocooler Development at Sunpower. Cryocoolers 13 (Springer, New York, 2005), pp. 31–40

    Google Scholar 

  85. J. Wang, Investigation on Thermal Compressor and VM-Type Cryocooler Working at Liquid Helium Temperature (Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 2020). (in Chinese)

    Google Scholar 

  86. Y. Matsubara, M. Kaneko. Vuilleumier cycle cryocooler operating below 8 K. p. 234.

  87. W. Dai, Y. Matsubara, H. Kobayashi, Experimental Investigation of 4K VM Type Pulse Tube Cooler. Cryocoolers 12 (Springer, New York, 2003), pp. 331–336

    Google Scholar 

  88. W. Dai, Y. Matsubara, H. Kobayashi, Experimental results on VM type pulse tube refrigerator. Cryogenics 42(6–7), 433–437 (2002)

    Article  ADS  Google Scholar 

  89. Y. Wang, X. Wang, W. Dai, E. Luo, A cryogen-free Vuilleumier type pulse tube cryocooler operating below 10 K. Cryogenics 90, 1–6 (2018)

    Article  ADS  Google Scholar 

  90. Y. Wang, Study on the Vuilleumier Type Pulse Tube Cryocooler Operating at the Liquid Helium Temperature (Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 2019). (in Chinese)

    Google Scholar 

  91. C. Pan, J. Wang, K. Luo, J. Wang, Y. Zhou, Progress on a novel VM-type pulse tube cryocooler for 4 K. Cryogenics 8, 866–869 (2017)

    Google Scholar 

  92. C. Pan, J. Wang, K. Luo, L. Chen, H. Jin, W. Cui et al., Numerical and experimental study of VM type pulse tube cryocooler with multi-bypass operating below 4 K. Cryogenics 9, 871–879 (2019)

    Google Scholar 

  93. C. Pan, T. Zhang, Y. Zhou, J. Wang, A novel coupled VM-PT cryocooler operating at liquid helium temperature. Cryogenics 7, 720–724 (2016)

    Google Scholar 

  94. T. Zhang, C. Pan, Y. Zhou, J. Wang, Numerical investigation and experimental development on VM-PT cryocooler operating below 4 K. Cryogenics 80, 138–146 (2016)

    Article  ADS  Google Scholar 

  95. T. Zhang, Investigation on Vuilleumier Coupling Pulse Tube Cryocooler Operating at Liquid Helium Temperature (Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 2017). (in Chinese)

    Google Scholar 

  96. J. Wang, C. Pan, T. Zhang, K. Luo, Y. Zhou, J. Wang, A novel method to hit the limit temperature of Stirling-type cryocooler. J. Appl. Phys. 123(6), 063901 (2018)

    Article  ADS  Google Scholar 

  97. J. Wang, C. Pan, T. Zhang, K.Q. Luo, X.T. Xi, X.L. Wu et al., First stirling-type cryocooler reaching lambda point of 4He (2.17 K) and its prospect in Chinese HUBS satellite project. Sci. Bull. 64(4), 219–221 (2019)

    Article  Google Scholar 

  98. H.S. Cao, S. Vanapalli, H.J. Holland, C.H. Vermeer, H.J.M. ter Brake, Clogging in micromachined Joule-Thomson coolers: Mechanism and preventive measures. Appl. Phys. Lett. 103(3), 034107 (2013)

    Article  ADS  Google Scholar 

  99. R. Radebaugh, Y. Huang, A. O’Gallagher, J. Gary, Calculated Regenerator Performance at 4 K with Helium-4 and Helium-3, 1st edn. (American Institute of Physics, College Park, 2011), pp. 225–234

    Google Scholar 

  100. I. Garaway, M.A. Lewis, P.E. Bradley, R. Radebaugh, Measured and Calculated Performance of a High Frequency, 4 K Stage, He-3 Regenerator. Cryocoolers 16 (Georgia Institute of Technology, Atlanta, 2011), pp. 405–410

    Google Scholar 

  101. X. Xi, B. Yang, Y. Zhao, L. Chen, J. Wang, Study on the use of porous materials with adsorbed helium as the regenerator of cryocooler at temperatures below 10 K. Appl. Phys. Lett. 118(14), 143902 (2021)

    Article  ADS  Google Scholar 

  102. X. Xi, J. Wang, L. Chen, L. Guo, B. Yang, Y. Zhou et al., Adsorption characteristics of helium on an activated carbon at 4–10 K and its prospective application in 4 K-class regenerative cryocoolers. New Carbon Mater. 34(6), 524–532 (2019)

    Article  Google Scholar 

  103. L. Chen, C. Kong, X. Wu, Y. Zhou, J. Wang, Specific heat capacities and flow resistance of an activated carbon with adsorbed helium as a regenerator material in refrigerators. New Carbon Mater. 33(1), 47–52 (2018)

    Article  Google Scholar 

  104. B. Yang, X. Xi, X. Liu, X. Xu, L. Chen, J. Wang, Measurement of apparent thermal conductivity of regenerator materials in 4–20 K temperature range. Cryogenics 116, 103300 (2021)

    Article  Google Scholar 

  105. R. Radebaugh, M. Lewis, E. Luo, J.M. Pfotenhauer, G.F. Nellis, L.A. Schunk, Inertance Tube Optimization for Pulse Tube Refrigerators, 1st edn. (American Institute of Physics, College Park, 2006), pp. 59–67

    Google Scholar 

  106. E. Luo, R. Radebaugh, M. Lewis, Inertance Tube Models and Their Experimental Verification, 1st edn. (American Institute of Physics, College Park, 2004), pp. 1485–1492

    Google Scholar 

  107. D. Gedeon, DC Gas Flows in Stirling and Pulse Tube Cryocoolers. Cryocoolers 9 (Springer, New York, 1997), pp. 385–392

    Google Scholar 

  108. C. Huang, Q. Cao, X. Zhi, X. Xia, L. Qiu, Effects of DC flow on pulse tube cryocooler working at liquid hydrogen and liquid nitrogen temperatures. Appl. Therm. Eng. 137, 451–460 (2018)

    Article  Google Scholar 

  109. J.Y. Hu, E.C. Luo, Z.H. Wu, W. Dai, S.L. Zhu, Investigation of an innovative method for DC flow suppression of double-inlet pulse tube coolers. Cryogenics 47(5–6), 287–291 (2007)

    Article  ADS  Google Scholar 

  110. X. Wang, Y. Zhang, H. Li, W. Dai, S. Chen, G. Lei et al., A high efficiency hybrid stirling-pulse tube cryocooler. AIP Adv. 5(3), 037127 (2015)

    Article  ADS  Google Scholar 

  111. H. Rana, M.A. Abolghasemi, R. Stone, M. Dadd, P. Bailey, Numerical modelling of a coaxial Stirling pulse tube cryocooler with an active displacer for space applications. Cryogenics 106, 103048 (2020)

    Article  Google Scholar 

  112. Y. Kakimi, S.W. Zhu, T. Ishige, K. Fujioka, Y. Matsubara, Pulse-Tube Refrigerator and Nitrogen Liquefier with Active Buffer System. Cryocoolers 9 (Springer, New York, 1997), pp. 247–253

    Google Scholar 

  113. L. Chen, H. Jin, J. Wang, Y. Zhou, W. Zhu, Q. Zhou, 18.6 K single-stage high frequency multi-bypass coaxial pulse tube cryocooler. Cryogenics 5, 454–458 (2013)

    Google Scholar 

  114. Q. Zhou, L. Chen, X. Zhu, W. Zhu, Y. Zhou, J. Wang, Development of a high-frequency coaxial multi-bypass pulse tube refrigerator below 14 K. Cryogenics 6, 728–730 (2015)

    Google Scholar 

  115. Y.L. Ju, C. Wang, Y. Zhou, Dynamic experimental investigation of a multi-bypass pulse tube refrigerator. Cryogenics 37(7), 357–361 (1997)

    Article  ADS  Google Scholar 

  116. R. Radebaugh. Development of the pulse tube refrigerator as an efficient and reliable cryocooler. Proc Institute of Refrigeration (London). 2000;199900.

  117. G.K. Lavrenchenko, M.B. Kravchenko, The characteristics of a 4 K Gifford-McMahon cryocooler with a second stage-regenerator packed with cenospheres. Low Temp. Phys. 45(4), 452–464 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 12073058, U1831203), the National Key R&D Program of China (No. 2018YFB0504603), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDY-SSW-JSC028), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2019030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liubiao Chen or Junjie Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Gao, Z., Xi, X. et al. The State of the Art: Lightweight Cryocoolers Working in the Liquid-Helium Temperature Range. J Low Temp Phys 206, 321–359 (2022). https://doi.org/10.1007/s10909-021-02664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02664-x

Keywords

Navigation