Skip to main content
Log in

Study of the Structural, Electrical and Magnetic Properties of the \({\text{La}}_{0.67} {\text{Sr}}_{0.33 - x} {\text{Pb}}_{x} {\text{MnO}}_{3}\) Manganite Nanocrystalline Materials

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The manganite materials of \({\text{La}}_{0.67} {\text{Sr}}_{0.33} {\text{MnO}}_{3}\) family are of recent interest because of their high magnetic moment at room temperature and large Curie temperature which can be easily adjusted by the suitable substitution in the (La,Sr)-site. The interest in them is extended also because of the change in their electronic and magnetic properties with grain size reduction. The present paper contains the studies on the structural, electrical and magnetic properties of the manganite nanomaterials of \({\text{La}}_{0.67} {\text{Sr}}_{0.33 - x} {\text{Pb}}_{x} {\text{MnO}}_{3}\) (\(x\) = 0, 0.05, 0.10, 0.15, 0.25, and 0.33) series. Refinement of the powder X-ray diffractograms reveals that all samples crystallize into a rhombohedral structure with the \(R\overline{3} c\) space group. The lattice cell volume increases with the increase in \(x\) upto \(x = 0.15\), then decreases for higher \(x\) values. The micrographs obtained using a field emission scanning electron microscope show that the grain size of these samples varies in the range of 30–50 nm. The resistivity curves exhibit a broad hump around the metal–insulator transition temperature, \(T_{{{\text{MI}}}}\), which is extrinsic in behavior. From the studies of the field cooled magnetization, it is observed that the temperature of ferromagnetic ordering (\(T_{{\text{C}}}\)) falls in the range of 330.3–366.2 K. The results were explained in the framework of the theory of double exchange interaction. The field-dependent magnetization study shows ferromagnetic with very small coercive field and remanent magnetization of the samples at room temperature with reasonably large saturation magnetization. The present study reveals that the Pb-substitution could tune the physical properties of these materials according to their desired applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Chen, J. Fan, W. Tong, D. Hu, Y. Ji, J. Liu, L. Zhang, L. Pi, Y. Zhang, H. Yang, Sci. Rep. 6, 14 (2016).

  2. X. Zhang, J. Fann, L. Xu, D. Hu, W. Zhang, Y. Zhu, Ceram. Int. 42, 1476–1481 (2016)

    Article  Google Scholar 

  3. P.T. Phong, L.T. Duy, L.V. Bau, N.V. Dang, D.H. Manh, I.J. Lee, J. Electroceramics 36, 58–64 (2016)

    Article  Google Scholar 

  4. R. Skini, M. Khlifi, E.K. Hlil, RSC Adv. 6, 34271–34279 (2016)

    Article  ADS  Google Scholar 

  5. M.K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, D. Singh, J. Alloys Compd. 814, 152279–152290 (2020)

    Article  Google Scholar 

  6. W. Cheikh-RouhouKoubaa, M. Koubaa, A. Cheikhrouhou, J. Alloys Compd. 470, 42–46 (2009)

    Article  Google Scholar 

  7. Y. Marouani, S. Gharbi, F. Issaoui, E. Dhahri, B.F.O. Costa, M.A. Valente, M. Jemmali, J. Low Temp. Phys. 200, 131–141 (2020)

    Article  ADS  Google Scholar 

  8. S. Keshri, S. Biswas, P. Wiśniewski, J. Alloys Compd. 656, 245–252 (2016)

    Article  Google Scholar 

  9. R.D. Shannon, Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  10. P.T. Phong, N.V. Khien, N.V. Khien, N.V. Dang, D.H. Manh, L.V. Hong, I.J. Lee, Phys. B Condens. Matter 466–467, 44–49 (2015)

    Article  ADS  Google Scholar 

  11. I. Messaoui, M. Kumaresavanji, K. Riahi, W. CheikhrouhouKoubaa, M. Koubaa, A. Cheikhrouhou, J. Alloys Compd. 693, 705–718 (2017)

    Article  Google Scholar 

  12. Y. Kalyana Lakshmi, P. Venugopal Reddy, J. Alloys Compd. 470, 67–74 (2009)

    Article  Google Scholar 

  13. H.D. Shah, A. Lakhani, J.A. Bhalodia, J. Alloys Compd. 861, 157985 (2021)

    Article  Google Scholar 

  14. A.G. Gamzatov, T.A. Gadzhimuradov, J. Low Temp. Phys. 185, 590–596 (2016)

    Article  ADS  Google Scholar 

  15. M. Koubaa, W. Cheikh-RouhouKoubaa, A. Cheikhrouhou, Phys. B 403, 2477–2483 (2008)

    Article  ADS  Google Scholar 

  16. Ma.. Oumezzine, H. Bezerra-Sales, A. Selmia, E.K. Hlilc, RSC Adv. 9, 25627 (2019)

    Article  ADS  Google Scholar 

  17. G. Goya, T. Berquo, F. Fonseca, M. Morales, J. Appl. Phys. 94, 3520 (2003)

    Article  ADS  Google Scholar 

  18. E. Lakhal, A. Amira, R. Chihoub, N. Soylu, S.P. Altintas, A. Varilci, C. Terzioglu, J. Low Temp. Phys. 204, 48–56 (2021)

    Article  ADS  Google Scholar 

  19. P. Kameli, H. Salamati, A. Aezami, J. Alloys Compd. 450, 7–11 (2008)

    Article  Google Scholar 

  20. C. Rao, B. Raveau, Colossal Magnetoresistance (World Scientific, Singapore, 1998)

    Google Scholar 

  21. M. Jaime, P. Lin, S.H. Chun, M.B.S.P. Dorsey, M. Rubinstein, Phys. Rev. B 60, 1028–1032 (1999)

    Article  ADS  Google Scholar 

  22. M. Rubinstein, J. Appl. Phys. 87, 5019–5021 (2000)

    Article  ADS  Google Scholar 

  23. G. Li, H.D. Zhou, S.J. Feng, X.J. Fan, X.G. Li, Z.D. Wang, J. Appl. Phys. 92, 1406 (2002)

    Article  ADS  Google Scholar 

  24. S. Keshri, L. Joshi, S.S. Rajput, J. Alloys Compd. 509, 5796–5803 (2011)

    Article  Google Scholar 

  25. K.R. Bhayani, S.N. Kale, S. Arora, R. Rajagopal, H. Mamgain, R. Kaul-Ghanekar, D.C. Kundaliya, S.D. Kulkarni, R. Pasricha, S.D. Dhole, S.B. Ogale, K.M. Paknikar, Nanotechnology 18, 345101–345108 (2007)

    Article  Google Scholar 

  26. M.V. Kulkarni, D. Bodas, M.K. Paknikar, RSC Adv. 5, 60254–60263 (2015)

    Article  ADS  Google Scholar 

  27. G.M. Zhao, V. Smolyaninova, W. Prellier, H. Keller, Phys. Rev. Lett. 84, 6086–6089 (2000)

    Article  ADS  Google Scholar 

  28. S. Ghorai, S.A. Ivanov, R. Skini, P. Svedlindh, J. Phys.: Condens. Matter 33, 145801–145810 (2021)

    ADS  Google Scholar 

  29. A. Rostamnejadi, M. Venkatesan, H. Salamati, K. Ackland, H. Gholizadeh, P. Kameli, J.M.D. Coey, J. Appl. Phys. 121, 173902–173909 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We do acknowledge the Central Instrumentation Facility of Birla Institute of Technology, Mesra, Ranchi, India, for XRD and FESEM support. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Keshri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Wiśniewski, P. & Keshri, S. Study of the Structural, Electrical and Magnetic Properties of the \({\text{La}}_{0.67} {\text{Sr}}_{0.33 - x} {\text{Pb}}_{x} {\text{MnO}}_{3}\) Manganite Nanocrystalline Materials. J Low Temp Phys 206, 400–412 (2022). https://doi.org/10.1007/s10909-021-02654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02654-z

Keywords

Navigation