Skip to main content
Log in

Synthesis, Characterization and Activation energy of Nano-(GO)x/(Cu,Tl)-1234 Superconducting Composites

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Nano-graphene oxide, nano-(GO), was prepared via a modified Hummer’s method. Hence, superconducting composites of type (GO)x/(Cu0.25Tl0.75)Ba2Ca3Cu4O12−δ, x = 0.00, 0.25, 0.50, 0.75, 1.00, 1.50 and 2.00 wt%, were prepared via the solid-state reaction technique at 850 °C under ambient pressure. The prepared nano-(GO) was characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy and the selected-area electron diffraction pattern. The composites samples of type (GO)x/(Cu0.25Tl0.75)Ba2Ca3Cu4O12−δ were characterized using XRD and scanning electron microscopy. The electrical properties of the prepared samples were investigated using the electrical resistivity measurements. The results showed that the samples retained their superconductivity for all x values with a maximum enhancement in the phase formation, the superconducting transition temperature and the activation energy at x = 0.75 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A.A. Khurram, N.A. Khan, M. Mumtaz, Intercomparison of fluctuation induced conductivity of Cu0.5Tl0.5Ba2Can−1CunO2n+4−y (n = 2, 3, 4) superconductor thin films. Physica C 469, 279–282 (2009). https://doi.org/10.1016/j.physc.2009.02.008

    Article  ADS  Google Scholar 

  2. N.A. Khan, Y. Sekita, H. Ihara, Growth kinetics of Cu1−xTlxBa2Ca3Cu4O12−y thin films. Supercond. Sci. Technol. 15, 613–616 (2002). https://doi.org/10.1088/0953-2048/15/4/322

    Article  ADS  Google Scholar 

  3. S.M. Hasnain, M. Mumtaz, N.A. Khan, Optimum synthesis temperature of (Cu1−xTlx)Ba2Ca3Cu4O12−δ superconductor. J. Supercond. Nov. Magn. 24, 1653–1657 (2011). https://doi.org/10.1007/s10948-010-1073-5

    Article  Google Scholar 

  4. N.A. Khan, A.A. Khurram, A. Javed, A simple method for the normal pressure synthesis of Cu1−xTlxBa2Ca3Cu4O12−δ superconductor. Physica C 422, 9–15 (2005). https://doi.org/10.1016/j.physc.2005.02.013

    Article  ADS  Google Scholar 

  5. N.A. Khan, M. Mumtaz, M.M. Ahadian, A. Iraji-zad, X-ray photo-emission studies of Cu1−xTlxBa2Ca3Cu4O12−y superconductor thin films. Physica C 449, 47–52 (2006). https://doi.org/10.1016/j.physc.2006.06.052

    Article  ADS  Google Scholar 

  6. I.E. Agranovski, A.Y. Ilyushechkin, I.S. Altman, T.E. Bostrom, M. Choi, Methods of introduction of MgO nanoparticles into Bi-2212/Ag tapes. Physica C 434, 115–120 (2006). https://doi.org/10.1016/j.physc.2005.12.005

    Article  ADS  Google Scholar 

  7. Z.Y. Jia, H. Tang, Z.Q. Yang, Y.T. Xing, Y.Z. Wang, G.W. Qiao, Effects of nano-ZrO2 particles on the superconductivity of Pb-doped BSCCO. Physica C 337, 130–132 (2000). https://doi.org/10.1016/S0921-4534(00)00072-1

    Article  ADS  Google Scholar 

  8. M. Annabi, A. M’chirgui, F. Ben Azzouz, M. Zouaoui, M. Ben Salem, Addition of nanometer Al2O3 during the final processing of (Bi, Pb)-2223 superconductors. Physica C 405, 25–33 (2004). https://doi.org/10.1016/j.physc.2004.01.012

    Article  ADS  Google Scholar 

  9. R. Awad, A.I. Abou-Aly, M.M.H. Bdel Gawad, I.G. Eldeen, The influence of SnO2 nano-particles addition on the Vickers microhardness of (Bi, Pb)-2223 superconducting phase. J. Supercond. Nov. Magn. 25, 739–745 (2012). https://doi.org/10.1007/s10948-011-1334-y

    Article  Google Scholar 

  10. M.M.E. Barakat, Influence of Co0.5Zn0.5Fe2O4 nanoparticles addition on Vickers microhardness for Cu0.5Tl0.5-1223 phase. J. Supercond. Nov. Magn. 30, 2945–2955 (2017). https://doi.org/10.1007/s10948-016-3791-9

    Article  Google Scholar 

  11. K. Habanjar, F. Elhaj Hassan, R. Awad, Effect of BaFe12O19 nanoparticles addition on (Bi, Pb)-2223 superconducting phase. Mod. App. Sci. 13, 61–71 (2019). https://doi.org/10.5539/mas.v13n4p61

    Article  Google Scholar 

  12. R. Awad, Study of the influence of MgO Nano-Oxide addition on the electrical and mechanical properties of (Cu0.25Tl0.75)-1234 superconducting phase. J. Supercond. Nov. Magn. 21, 461–466 (2008). https://doi.org/10.1007/s10948-008-0385-1

    Article  Google Scholar 

  13. M.U. Muzaffar, S.H. Safeer, N.A. Khan, A.A. Khurram, T. Subhani, R. Nazir, Grain boundary shortening in CuTl-1234 superconductor by the addition of ZnO nanoparticles. J. Supercond. Nov. Magn. 31, 1669–1675 (2018). https://doi.org/10.1007/s10948-017-4385-x

    Article  Google Scholar 

  14. M. Anas, G.A. El-Shorbagy, Impact of nano-sized diluted magnetic semiconductors addition on (Cu, Tl)-1234 superconducting phase. J. Low Tem. Phys. 194, 183–196 (2019). https://doi.org/10.1007/s10909-018-2081-2

    Article  ADS  Google Scholar 

  15. M. Anas, G.A. El-Shorbagy, The effect of both temperature and magnetic field on magnetic hysteresis of (Cu0.25Tl0.75)Ba2Ca3Cu4O12−δ superconductor added with Nano-(Zn0.95Ni0.05O). J. Supercond. Nov. Magn. 33, 2931–2943 (2020). https://doi.org/10.1007/s10948-020-05572-5

    Article  Google Scholar 

  16. X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008). https://doi.org/10.1021/nl072838r

    Article  ADS  Google Scholar 

  17. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009). https://doi.org/10.1021/nl902623y

    Article  ADS  Google Scholar 

  18. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide—MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010). https://doi.org/10.1021/nn901311t

    Article  Google Scholar 

  19. D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012). https://doi.org/10.1021/cr300115g

    Article  Google Scholar 

  20. L. Wang, K. Lee, Y.-Y. Sun, M. Lucking, Z. Chen, J.J. Zhao, S.B. Zhang, Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3, 2995–3000 (2009). https://doi.org/10.1021/nn900667s

    Article  Google Scholar 

  21. C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, D.-H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211–2224 (2013). https://doi.org/10.1021/ar300159f

    Article  Google Scholar 

  22. N. Selvakumar, A. Biswas, S.B. Krupanidhi, H.C. Barshilia, Enhanced optical absorption of graphene-based heat mirror with tunable spectral selectivity. Sol. Energy Mater. Sol. Cells 186, 149–153 (2018). https://doi.org/10.1016/j.solmat.2018.06.041

    Article  Google Scholar 

  23. M. Vaqueiro-Contreras, C. Bartlam, R.S. Bonilla, V.P. Markevich, M.P. Halsall, A. Vijayaraghavan, A.R. Peaker, Graphene oxide films for field effect surface passivation of silicon for solar cells. Sol. Energy Mater. Sol. Cells 187, 189–193 (2018). https://doi.org/10.1016/j.solmat.2018.08.002

    Article  Google Scholar 

  24. M.M. Saeed, M. Ajmal, M.U. Islam, M.A. Nazir, Synthesis and characterization of Y-type ferrite reinforced graphene oxide composites graphene oxide composites. J. Supercond. Nov. Magn. 33, 2705–2713 (2020). https://doi.org/10.1007/s10948-020-05524-z

    Article  Google Scholar 

  25. L.M.D. Maestrelli, H.T.T. Oyama, P.A.R. Muñoz, I.A. Cestari, G.J.M. Fechine, Role of graphene oxide on the mechanical behaviour of polycarbonate-urethane/graphene oxide composites. Mat. Res. (2021). https://doi.org/10.1590/1980-5373-MR-2020-0586

    Article  Google Scholar 

  26. S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010

    Article  Google Scholar 

  27. Sudesh, N. Kumar, S. Das, C. Bernhard, G.D. Varma, Effect of graphene oxide doping on superconducting properties of bulk MgB2, Supercond. Sci. Technol. 26 095008. (2013) https://doi.org/10.1088/0953-2048/26/9/095008

  28. S. Dadras, S. Dehghani, M. Davoudiniya, S. Falahati, Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping. Mater. Chem. Phys. 193, 496–500 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.003

    Article  Google Scholar 

  29. S. Dadras, S. Falahati, S. Dehghani, Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O7−δ. Physica C 548, 65–67 (2018). https://doi.org/10.1016/j.physc.2018.02.010

    Article  ADS  Google Scholar 

  30. B. Sahoo, S. Karmakar, D. Behera, Improvement of critical parameters of YBCO superconductor by addition of graphene oxide. AIP Conf. Proc. 2162, 020060 (2019). https://doi.org/10.1063/1.5130270

    Article  Google Scholar 

  31. M.Z. Gaffoor, A.L.L. Jarvis, E.A. Young, D. Dorrell, Comparison of the effect of graphene and graphene oxide doping on YBCO. J. Phys. Conf. Ser. 1559, 012028 (2020)

    Article  Google Scholar 

  32. A.H. Surani, A.R.A. Rashid, N. Arshad, A.A.N. Hakim, High-yield and stepwise synthesis of graphene oxide by modified hummers’ method. Int. J. Nanoelectron. Mater. 12, 413–422 (2019)

    Google Scholar 

  33. C. Botas, P. Álvarez, P. Blanco, M. Granda, C. Blanco, R. Santamaría, L.J. Romasanta, R. Verdejo, M.A. López-Manchado, R. Menéndez, Graphene materials with different structures prepared from the same graphite by the hummers and Brodie methods. Carbon 65, 156–164 (2013). https://doi.org/10.1016/j.carbon.2013.08.009

    Article  Google Scholar 

  34. C. Kim, J. Lee, W. Wang, J. Fortner, Organic functionalized graphene oxide behavior in water. Nanomaterials 10, 1228 (2020). https://doi.org/10.3390/nano10061228

    Article  Google Scholar 

  35. W.-S. Hung, C.-H. Tsou, M. De Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem. Mater. 26, 2983–2990 (2014). https://doi.org/10.1021/cm5007873

    Article  Google Scholar 

  36. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  ADS  MATH  Google Scholar 

  37. Y. Gong, D. Li, Q. Fu, C. Pan, Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog. Nat. Sci.: Mater. Int. 25, 379–385 (2015). https://doi.org/10.1016/j.pnsc.2015.10.004

    Article  Google Scholar 

  38. M.F.R. Hanifah, J. Jaafar, M. Aziz, A.F. Ismail, M.A. Rahman, M.H.D. Othman, Synthesis of graphene oxide nanosheets via modified hummers’ method and its physicochemical properties. J. Teknol. 74, 195–198 (2015)

    Google Scholar 

  39. S. Verma, R.K. Dutta, A facile method of synthesizing ammonia modified graphene oxide for efficient removal of uranyl ions from aqueous medium. RSC Adv. 5, 77192–77203 (2015). https://doi.org/10.1039/c5ra10555b

    Article  ADS  Google Scholar 

  40. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013). https://doi.org/10.1016/j.carbon.2012.10.013

    Article  Google Scholar 

  41. C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010). https://doi.org/10.1021/nl9031617

    Article  ADS  Google Scholar 

  42. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, A. Zettl, Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22, 4467–4472 (2010). https://doi.org/10.1002/adma.201000732

    Article  Google Scholar 

  43. J. Xie, F. Tu, Q. Su, G. Du, S. Zhang, T. Zhu, G. Cao, X. Zhao, In situ TEM characterization of single PbSe/reduced-graphene-oxide nanosheet and the correlation with its electrochemical lithium storage performance. Nano Eng. 5, 122–131 (2014). https://doi.org/10.1016/j.nanoen.2014.03.001

    Article  Google Scholar 

  44. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, Li. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.-J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012). https://doi.org/10.1021/nl2038979

    Article  ADS  Google Scholar 

  45. L. Lin, S. Zhang, Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. (Camb.) 48, 10177–10179 (2012). https://doi.org/10.1039/c2cc35559k

    Article  Google Scholar 

  46. M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6, 11988–11994 (2014). https://doi.org/10.1039/c4nr02365j

    Article  ADS  Google Scholar 

  47. L. Tang, R. Ji, X. Li, G. Bai, C.P. Liu, J. Hao, J. Lin, H. Jiang, K.S. Teng, Z. Yang, S.P. Lau, Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 8, 6312–6320 (2014). https://doi.org/10.1021/nn501796r

    Article  Google Scholar 

  48. H. Ihara, K. Tanaka, Y. Tanaka, A. Iyo, N. Terada, M. Tokumoto, M. Ariyama, I. Hase, A. Sundaresan, N. Hamada, S. Miyashita, K. Tokiwa, T. Watanabe, Mechanism of Tc enhancement in Cu1xTlx1234 and -1223 system with Tc > 130 K. Physica C 341–348, 487–488 (2000). https://doi.org/10.1016/S0921-4534(00)00555-4

    Article  ADS  Google Scholar 

  49. H. Ihara, K. Tokiwa, K. Tanaka, T. Tsukamoto, T. Watanabe, H. Yamamoto, A. Iyo, M. Tokumoto, M. Umeda, Cu1xTlxBa2Ca3Cu4O12y (Cu1xTlx1234) Superconductor with Tc=126 K. Physica C 282–287, 957–958 (1997). https://doi.org/10.1016/S0921-4534(97)00592-3

    Article  ADS  Google Scholar 

  50. N.A. Khan, A. Saleem, S.T. Hussain, Enhanced inter-grain connectivity in nano-particles doped (Cu0.5Tl0.5)Ba2Ca2Cu3O10−δ superconductors. J. Supercond. Nov. Magn. 25, 1725–1733 (2012). https://doi.org/10.1007/s10948-012-1512-6

    Article  Google Scholar 

  51. W. Kong, R. Abd-Shukor, Enhanced electrical transport properties of nano NiFe2O4-added (Bi1.6Pb0.4)Sr2Ca2Cu3O10 superconductor. J. Supercond. Nov. Magn. 23, 257–263 (2010). https://doi.org/10.1007/s10948-009-0524-3

    Article  Google Scholar 

  52. A.I. Abou-Aly, M.M.H. Abdel Gawad, R. Awad, I.G. Eldeen, Improving the physical properties of (Bi, Pb)-2223 phase by SnO2 nano-particles addition. J. Supercond. Nov. Magn. 24, 2077–2084 (2011). https://doi.org/10.1007/s10948-011-1171-z

    Article  Google Scholar 

  53. A. Ghattas, M. Annabi, M. Zouaoui, F. Ben Azzouz, M. Ben Salem, Flux pinning by Al-based nano particles embedded in polycrystalline (Bi, Pb)-2223 superconductors. Physica C 468, 31–38 (2008). https://doi.org/10.1016/j.physc.2007.10.006

    Article  ADS  Google Scholar 

  54. P. Badica, A. Iyo, A. Crisan, H. Ihara, (Cu, Tl)Ba2Ca3Cu4Ox compositions: II. Heating rate applied to synthesis of superconducting ceramics. Supercond. Sci. Technol. 15, 975–982 (2002). https://doi.org/10.1088/0953-2048/15/6/324

    Article  ADS  Google Scholar 

  55. N.A. Khan, M. Mumtaz, A.A. Khurram, P. Kameli, AC-susceptibility measurements of Cu1xTlxBa2Ca3Cu4O12δ superconductor thin films with different thallium content. Physica C 468, 233–236 (2008). https://doi.org/10.1016/j.physc.2007.12.005

    Article  ADS  Google Scholar 

  56. J.A. Alarco, E. Olsson, S.J. Golden, A. Bhargava, T. Yamashita, J. Barry, I.D.R. Mackinnon, Microstructural characterization of quenched melt-textured YBa2Cu3O7−δ materials. J. Mater. Res. 12, 624–635 (1997). https://doi.org/10.1557/JMR.1997.0095

    Article  ADS  Google Scholar 

  57. A. Amira, F. Bouaïcha, N. Boussouf, M.F. Mosbah, Substitution of Sr2+ by Eu3+ in Bi-2201 ceramics, effects on structure and physical properties. Solid-State Sci. 12, 699–705 (2010). https://doi.org/10.1016/j.solidstatesciences.2009.09.015

    Article  ADS  Google Scholar 

  58. P.W. Anderson, Hall effect in the two-dimensional Luttinger liquid. Phy. Rev. Lett. 67, 2092 (1991). https://doi.org/10.1103/PhysRevLett.67.2092

    Article  ADS  Google Scholar 

  59. A.I. Abou-Aly, R. Awad, I.H. Ibrahim, W. Abdeen, Effect of Sm-substitution on the electrical and magnetic properties of (Tl0.8Hg0.2)-1223. J. Alloys Compd. 481, 462–469 (2009). https://doi.org/10.1016/j.jallcom.2009.02.156

    Article  Google Scholar 

  60. A.I. Abou-Aly, R. Awad, M. Kamal, M. Anas, Excess conductivity analysis of (Cu0.5Tl0.5)-1223 substituted by Pr and La. J. Low Temp. Phys. 163, 184–202 (2011). https://doi.org/10.1007/s10909-010-0339-4

    Article  ADS  Google Scholar 

  61. H. Salamati, P. Kameli, Effect of deoxygenation on the weak-link behavior of YBa2Cu3O7−δ superconductors. Solid State Commun. 125, 407–411 (2003). https://doi.org/10.1016/S0038-1098(02)00809-8

    Article  ADS  Google Scholar 

  62. A. Mellekh, M. Zouaoui, F. Ben Azzouz, M. Annabi, M. Ben Salem, Nano-Al2O3 particle addition effects on YBa2Cu3Oy superconducting properties. Solid State Commun. 140, 318–323 (2006). https://doi.org/10.1016/j.ssc.2006.08.008

    Article  ADS  Google Scholar 

  63. S. Cao, L. Li, F. Liu, W. Li, C. Chi, C. Jing, J. Zhang, Structure and charge transfer correlated with oxygen content for a Y0.8Ca0.2Ba2Cu3Oy (y = 6.84–6.32) system: a positron study. Supercond. Sci. Technol. 18, 606–610 (2005). https://doi.org/10.1088/0953-2048/18/5/005

    Article  ADS  Google Scholar 

  64. V.P.S. Awana, S.K. Malik, W.B. Yelon, C.A. Cardoso, O.F. de Lima, A. Gupta, A. Sedky, A.V. Narlikar, Neutron diffraction on Er1−xCaxBa2Cu3O7−δ (0.0 ≤ x ≤ 0.3) system: possible oxygen vacancies in CuO2 planes. Physica C 338, 197–204 (2000). https://doi.org/10.1016/S0921-4534(00)00308-7

    Article  ADS  Google Scholar 

  65. A.I. Abou-Aly, M. Anas, S. Ebrahim, R. Awad, I.G. Eldeen, Comparative studies between the influence of single- and multi-walled carbon nanotubes addition on Gd-123 superconducting phase. Mod. Phys. Lett. B 30, 1650418 (2016). https://doi.org/10.1142/S0217984916504182

    Article  ADS  Google Scholar 

  66. W. Abdeen, N.H. Mohammed, R. Awad, S.A. Mahmoud, M. Hasebbo, Influence of Nano-Ag addition on phase formation and electrical properties of (Cu0.5Tl0.5)-1223 superconducting phase. J. Supercond. Nov. Magn. 26, 623–631 (2013). https://doi.org/10.1007/s10948-012-1803-y

    Article  Google Scholar 

  67. M. Anas, S. Ebrahim, I.G. Eldeen, R. Awad, A.I. Abou-Aly, Effect of single and multi-wall carbon nanotubes on the mechanical properties of Gd-123 superconducting phase. Chem. Phys. Lett. 686, 34–43 (2017). https://doi.org/10.1016/j.cplett.2017.08.016

    Article  ADS  Google Scholar 

  68. I. Younes, H. Basma, M. Anas, R. Awad, Investigation of the dielectric properties Of (Cu, Tl) 1234 added with graphene. Mod. Appl. Sci. 13, 12–23 (2019).

    Article  Google Scholar 

  69. N.H. Mohammed, R. Awad, A.I. Abou-Aly, I.H. Ibrahim, M. Roumié, M. Rekaby, Ion beam analysis and electrical resistivity studies of (Cu0.5Tl0.5)-1223 phase with added nano-oxides. J. Supercond. Nov. Magn. 25, 1441–1454 (2012). https://doi.org/10.1007/s10948-012-1465-9

    Article  Google Scholar 

  70. B. Jayaram, P.C. Lanchester, M.T. Weller, Localization and interaction effects during superconductor-insulator transition of Bi2Sr2Ca1−xGdxCu2O8+d. Phys. Rev. B Condens. Matter 43, 5444–5450 (1991). https://doi.org/10.1103/PhysRevB.43.5444

    Article  ADS  Google Scholar 

  71. I. Bouchoucha, F. Ben Azzouz, M. Ben Salem, Excess conductivity studies in Zn0.95Mn0.05O and ZnO added YBa2Cu3Oy superconductors. J. Supercond. Nov. Magn. 24, 345–350 (2011). https://doi.org/10.1007/s10948-010-1007-2

    Article  Google Scholar 

  72. A.J. Batista-Leyva, M.T.D. Orlando, L. Rivero, R. Cobas, E. Altshuler, The resistive transition of (Hg0.85Re0.15)(Ba1−ySry)2Ca2Cu3O8+δ superconducting polycrystals. Physica C 383, 365–373 (2003). https://doi.org/10.1016/S0921-4534(02)01346-1

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Superconductivity and Metallic-Glass Lab, Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt, in cooperation of Institute of Graduate Studies and Research (IGSR), Materials Science Department, Alexandria University, Alexandria, Egypt, for aiding with the experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anas, M., El-Shorbagy, G.A., Abou-Aly, A.I. et al. Synthesis, Characterization and Activation energy of Nano-(GO)x/(Cu,Tl)-1234 Superconducting Composites. J Low Temp Phys 206, 210–231 (2022). https://doi.org/10.1007/s10909-021-02646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02646-z

Keywords

Navigation