Skip to main content
Log in

The Repulsive Casimir-Type Forces of a Weakly Interacting Bose–Einstein Condensate Gas

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

By means of the quantum field theory (QFT) in the one-loop approximation, we consider the finite-size effect of the quantum fluctuation energy of a weakly interacting Bose–Einstein condensate (BEC) gas confined between two parallel plates of a three-dimensional rectangular. We find the repulsive Casimir-type force acts on the plates when either Zaremba boundary condition (BC) or anti-periodic BC is imposed. Our results are obtained in both grand canonical ensemble (GCE) and canonical ensemble (CE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H.B.G. Casimir, D. Polder, The influences of retardation on the London-van der Waals forces. Phys. Rev. 73, 360 (1948)

    Article  ADS  Google Scholar 

  2. H.B.G. Casimir, On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    MATH  Google Scholar 

  3. M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect. Oxford University Press, International Series of Monographs on Physics, (2009)

    Book  Google Scholar 

  4. A. Gambassi, The Casimir effect: from quantum to critical fluctuations. J. Phys. Conf. Ser. 161, 012037 (2009)

    Article  Google Scholar 

  5. K. Milton, E.K. Abalo, P. Parashar, N. Pourtolami, I. Brevik, S.A. Ellingsen, Repulsive Casimir and Casimir–Polder forces. J. Phys. A Math. Theor. 45, 374006 (2012)

    Article  MathSciNet  Google Scholar 

  6. M. Asorey, J.M. Muñoz-Castañeda, Attractive and repulsive Casimir vacuum energy with general boundary conditions. Nucl. Phys. B 874, 852–876 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. J.M. Obrecht, R.J. Wild, M. Antezza, L.P. Pitaevskii, S. Stringari, E.A. Cornell, Measurement of the temperature dependence of the Casimir-Polder force. Phys. Rev. Lett. 98, 063201 (2007)

    Article  ADS  Google Scholar 

  8. J. N. Munday, F. Capasso, V. Adrian Parsegian, Measured long-range repulsive Casimir–Lifshitz forces. Nature 457 (2009)

  9. B.E. Sernelius, Casimir experiments showing saturation effects. Phys. Rev. A 80, 043828 (2009)

    Article  ADS  Google Scholar 

  10. A.O. Sushkov, W.J. Kim, D.A.R. Dalvit, S.K. Lamoreaux, Observation of the thermal Casimir force. Nat. Phys. 7 (2011)

  11. H.B. Chan, V.A. Aksyuk, R.N. Kleiman, D.J. Bishop, F. Capasso, Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 291 (2001)

  12. O. Kenneth, I. Klich, A. Mann, M. Revzen, Repulsive Casimir Forces. Phys. Rev. Lett. 89, 3 (2002)

    Article  Google Scholar 

  13. M. Fukuto, Y.F. Yano, P.S. Pershan, Critical Casimir effect in three-dimensional ising systems: measurements on binary wetting films. Phys. Rev. Lett. 94, 135702 (2005)

    Article  ADS  Google Scholar 

  14. A. Recati, J.N. Fuchs, C.S. Peça, W. Zwerger, Casimir forces between defects in one-dimensional quantum liquids. Phys. Rev. A 72, 023616 (2005)

    Article  ADS  Google Scholar 

  15. X. Zhai, X. Li, Casimir pistons with hybrid boundary conditions. Phys. Rev. D 76, 047704 (2007)

    Article  ADS  Google Scholar 

  16. T.H. Phat, N.V. Thu, Finite-size effects of linear sigma model in compactified space time. Int. J. Modern Phys. A 15, 1450078 (2014)

  17. D.C. Roberts, Y. Pomeau, https://arxiv.org/abs/cond-mat/0503757

  18. P.A. Martin, V.A. Zagrebnov, The Casimir effect for the Bose-gas in slabs. Europhys. Lett. 73, 15–20 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Gambassi, S. Dietrich, The Casimir effect for the Bose-gas in slabs. Europhys. Lett. 74(4), 754–755 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Biswas, Bose-Einstein condensation and the Casimir effect for an ideal Bose gas confined between two slabs. J. Phys. A 40, 9969 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Edery, Casimir forces in Bose-Einstein condensates: finite-size effects in three-dimensional rectangular cavities. J. Stat. Mech. Theory Exp. P06007 (2006)

  22. J. Schiefele, C. Henkel, Casimir energy of a BEC: from moderate interactions to the ideal gas. J. Phys. A Math. Theor. 42, 045401 (2009)

    Article  MathSciNet  Google Scholar 

  23. S. Biswas, J.K. Bhattacharjee, D. Majumder, K. Saha, N. Chakravarty, Casimir force on an interacting Bose-Einstein condensate. J. Phys. B 43, 085305 (2010)

  24. M. Napio’rkowski, J. Piasecki, Casimir force induced by an imperfect Bose gas. Phys. Rev. E 84, 061105 (2011)

  25. P. Jakubczyk, M. Napiórkowski, T. Skek, Repulsive Casimir forces at quantum criticality. Europhys. Lett. 113, 30006 (2016)

    Article  Google Scholar 

  26. M.M. Faruk, S. Biswas, Repulsive Casimir force in Bose-Einstein Condensate. J. Stat. Mech. Theory Exp. 2018, 043401 (2018)

  27. N. V. Thu, The forces on a single interacting Bose-Einstein condensate. Phys. Lett. A 382, 1078–1084 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. N.V. Thu, L.T. Theu, D.T. Hai, Casimir and surface tension forces on a single interacting Bose-Einstein condensate in canonical ensemble. J. Exp. Theor. Phys. 130, 321–326 (2020)

  29. N.V. Thu, P.T. Song, Casimir effect in a weakly interacting Bose gas confined by a parallel plate geometry in improved Hartree-Fock approximation. Physica A 540, 123018 (2020)

  30. P.T. Song, N.V. Thu, The Casimir effect in a weakly interacting Bose gas. J. Low. Temp. Phys. 202, 160–174 (2021)

  31. E. Aydiner, Repulsive Casimir force of the free and harmonically trapped Bose gas in the Bose–Einstein condensate phase. Ann. Phys. (Berlin) 2020, 2000178 (2020)

  32. M. Xie, Bose-Einstein condensation temperature of finite systems. J. Stat. Mech. Theory Exp. 2018, 053109 (2018)

  33. C.M. Wilson, Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479 (2011)

  34. S. Biswas, J.K. Bhattacharjee, H.S. Samanta, S. Bhattacharyya, B. Hu, The critical Casimir force in the superfluid phase: effect of fluctuations. New J. Phys. 12, 063039 (2010)

  35. F. Pinto, The Casimir effect and its role in nanotechnology applications. Mater. Today Proc. 5, 15976–15982 (2018)

    Article  Google Scholar 

  36. G. Bimonte, G.L. Klimchitskaya, V.M. Mostepanenko, How to observe the giant thermal effect in the Casimir force for graphene systems. Phys. Rev. A 96, 012517 (2017)

    Article  ADS  Google Scholar 

  37. K. Bradonji’, J.D. Swain, A. Widom, Y.N. Srivastava, The Casimir effect in biology: the role of molecular quantum electrodynamics in linear aggregations of red blood cells. J. Phys. Conf. Ser. 161, 012035 (2009)

    Article  Google Scholar 

  38. I. Brevik, K.A. Milton, S.D. Odintsov, K.E. Osetrin, Dynamical Casimir effect and quantum cosmology. Phys. Rev. D 62, 064005 (2000)

    Article  ADS  Google Scholar 

  39. M. Asorey, G. Marmo, J.M. Muñoz-Castañeda, In: Odintsov, et al. (Eds.), The Casimir effect and cosmology. Tomsk State Ped. Univ. Press (2009)

  40. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  41. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  42. M.B. Pinto et al., Effective potential and thermodynamics for a coupled two-field Bose-gas model. Phys. Rev. A 74, 033618 (2006)

    Article  ADS  Google Scholar 

  43. J.O. Andersen, Theory of the weakly interacting Bose gas. Rev. Mod. Phys. 76, 599 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  44. S. Floerchinger, C. Wetterich, Superfluid Bose gas in two dimensions. Phys. Rev. A 79, 013601 (2009)

    Article  ADS  Google Scholar 

  45. A. Schmitt, Dense Matter in Compact Stars. Springer, Berlin (2010)

    Book  Google Scholar 

  46. T.D. Lee, K. Huang, C.N. Yang. Phys. Rev. 106, 6 (1957)

    Google Scholar 

  47. T.D. Lee, C.N. Yang. Phys. Rev. 105, 1119 (1957)

    Article  ADS  Google Scholar 

  48. T. Haugset, H. Haugerud, F. Ravndal, Thermodynamics of a weakly interacting Bose-Einstein gas. Ann. Phys. 266, 27–62 (1998)

    Article  ADS  Google Scholar 

  49. G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists, 6th ed., 376. Elsevier Academic Press, San Diego, California USA (2005)

  50. R. Lopes et al.. Phys. Rev. Lett. 119, 190404 (2017)

    Article  ADS  Google Scholar 

  51. S. Inouye, M.R. Andrews, J. Stenger, H. -J. Miesner, D.M. Stamper-Kurn, W. Ketterle. Nature (London) 392, 151 (1998)

  52. A. Camacho, Speed of sound in a Bose-Einstein condensate, https://arxiv.org/abs/1205.4774

  53. P.T. Song (in preparing to submit)

Download references

Acknowledgements

This research is funded by Ministry of Education and Training of Vietnam under grant number B2019-TTB-08. The fruitful discussions with P.N. Thu and L.T. Lam are acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham The Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, P.T. The Repulsive Casimir-Type Forces of a Weakly Interacting Bose–Einstein Condensate Gas. J Low Temp Phys 206, 16–31 (2022). https://doi.org/10.1007/s10909-021-02641-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02641-4

Keywords

Navigation