Skip to main content
Log in

Statistical Properties of the 1D Space Fractional Klein–Gordon Oscillator

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the quantum fractional of the one-dimensional Klein–Gordon oscillator. By using a semiclassical approximation, the energy eigenvalues have been determined for oscillators. The obtained results show a remarkable influence of the fractional parameter \(\alpha\) on the energy eigenvalues. By considering a unique energy spectrum, we present a simple numerical computation of the thermal properties of a defined energy spectrum of a system. The Euler–Maclaurin formula has been used to calculate the partition function and therefore the associated thermodynamics quantities. Besides this, we also calculate the eigenfunctions of our problem. The influence of the parameter \(\alpha\) on these functions as well as the probability of density has been tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Ross, Hist. Math. 4, 75–89 (1977)

    Article  Google Scholar 

  2. N. Laskin, Fractional Quantum Mechanics (World Scientific Publishing Co. Pte. Ltd, Singapore, 2018)

    Book  Google Scholar 

  3. R. Herrmann, Fractional Calculus: An Introduction for Physicists, 2nd edn. (World Scientific Publishing Co. Pte. Ltd, Singapore, 2014)

    Book  Google Scholar 

  4. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  Google Scholar 

  5. N. Laskin, Fractional Dynamics: Recent Advances, Chapter 17 (World Scientific, Singapore, 2012), p. 393

    MATH  Google Scholar 

  6. N. Laskin, Chaos 10, 780 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Laskin, Phys. Rev. E 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Laskin, Phys. Rev. E 62, 3135 (2000)

    Article  ADS  Google Scholar 

  9. V.E. Tarasov, Handbook of Fractional Calculus with Applications (Walter de Gryter, Berlin, 2019)

    Google Scholar 

  10. S.S. Bayin, J. Math. Phys. 53, 042105 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. S.S. Bayin, J. Math. Phys. 53, 084101 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. Y. Wei, Int. J. Theor. Math. Phys. 5, 87–111 (2015)

    Google Scholar 

  13. Y. Luchko, J. Math. Phys. 54, 012111 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. N. Laskin, Phys. Lett. A 268, 298–305 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. B.P.M.M. Hasan, Ann. Phys. 396, 371–385 (2018)

    Article  ADS  Google Scholar 

  16. B.P.M.M. Hasan, Phys. Lett. A 382, 248–252 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Lomin, Chaos Solitons Fractals X 1, 100001 (2019)

    Article  Google Scholar 

  18. S.I. Muslih, O.P. Agrawal, D. Baleanu, J. Phys. A Math. Theor. 43, 055203 (2010)

    Article  ADS  Google Scholar 

  19. V.K.S.M. Tamsir, Alex. Eng. J. 55, 561–564 (2016)

    Article  Google Scholar 

  20. V.K. Srivastava, M.K. Awasthi, M. Tamsir, AIP Adv. 3, 032142 (2013)

    Article  ADS  Google Scholar 

  21. V.K. Srivastava, M.K. Awasthi, R.K. Chaurasia, M. Tamsir, Model. Simul. Eng. (2013)

  22. R.K. Chaurasia, V. Mathur, R.L. Pareekh, M. Tamsir, V.K. Srivastava, Alex. Eng. J. 57, 1877–1881 (2018)

    Article  Google Scholar 

  23. V.K.S.M. Tamsir, Alex. Eng. J. 55, 867–874 (2016)

    Article  Google Scholar 

  24. N. Dhiman, M.J. Huntul, M. Tamsir, Eng. Comput. 38, 2921–2936 (2021)

    Article  Google Scholar 

  25. M. Tamsir, N. Dhiman, D. Nigam, A. Chauhan, AIMS Math. 6, 3805–3820 (2021)

    Article  MathSciNet  Google Scholar 

  26. H.H.A. Boumali, Eur. Phys. J. Plus 128, 124 (2013)

    Article  Google Scholar 

  27. A. Boumali, EJTP 12 (2015)

  28. G.E. Andrews, R. Askey, R. Roy, Special Functions (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  29. R. Herrmann, Phys. A 389, 4613–4622 (2010)

    Article  MathSciNet  Google Scholar 

  30. F. Olivar-Romero, O. Rosas-Ortiz, J. Phys. Conf. Ser. 698, 012025 (2016)

    Article  Google Scholar 

  31. H.C. Rosu, S.C. Mancas, J. Phys. Conf. Ser. 1540, 012005 (2020)

    Article  Google Scholar 

  32. A. Boumali, A. Hafdallah, A. Toumi, Phys. Scr. 84, 037001 (2011)

    Article  ADS  Google Scholar 

  33. R. Herrmann, arXiv:math-ph/0510099v4 (2006)

  34. R. Herrmann, J. Phys. G Nucl. Part. Phys. 34, 607 (2007)

    Article  ADS  Google Scholar 

  35. M. Berman, N. Moiseyev, Phys. Rev. A 98, 042110 (2018)

    Article  ADS  Google Scholar 

  36. F. Mainardi, Y. Luchko, G. Pagnini, Fract. Calc. Appl. Anal. 4, 153 (2001)

    MathSciNet  Google Scholar 

  37. H. Takayasu, Fractals in the Physical Sciences, Nonlinear Science: Theory and Applications (Manchester University Press, Manchester, 1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmalek Boumali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Review of the Eigensolutions of 1D Harmonic Oscillator Using the Riesz–Feller Fractional Derivative

Appendix: Review of the Eigensolutions of 1D Harmonic Oscillator Using the Riesz–Feller Fractional Derivative

This appendix is a review of the method proposed by Rosu and Mancas [31]. The method is based on factorization algorithm and uses the Riesz–Feller fractional derivative. At first, its Olivar-Romero and Rosas-Ortiz [30] were first ones to apply the factorization method to a fractional quantum harmonic oscillator. Then Rosu and Mancas [31] apply the factorization algorithm to the fractional quantum harmonic oscillator along the lines previously proposed by Olivar-Romero and Rosas-Ortiz [30] by using the Riesz–Feller fractional derivative.

Starting with the space-fractional Schrödinger equation

$$\begin{aligned} \left[ -D_{\alpha }\hbar \frac{{\mathrm{{d}}}^{\alpha }}{{\text {d}}x^{\alpha }}+V\left( x\right) \right] \psi \left( x\right) =E\psi \left( x\right) . \end{aligned}$$
(56)

In his treatment about Harmonic oscillator, Laskin defined the form of the potential \(V\left( x\right)\) with \(\left| x\right| ^{\beta }\). The authors [30] fixed the parameter (\(\beta =2\)), and their arguments are that the arbitrariness of \(\beta\) makes no substantial difference in the method. However, they have specialized their study of oscillator potential \(V\left( x\right) =x^{2}\). The generalities of the method can be glimpsed the potential \(V\left( x\right)\) with the form \(\left| x\right| ^{\beta }\). The reason of this is that the effect of the fractional formulation is encoded in the momentum operator \({\hat{p}}^{\alpha }\) which is expressed in terms of the \(\alpha\)-order spatial derivative.

Now, using that \(D_{\alpha }\hbar =1\), Eq. (56) becomes

$$\begin{aligned} H_{\alpha }\psi \left( x\right) =\left[ -\frac{{\mathrm{{d}}}^{\alpha }}{{\text {d}}x^{\alpha }}+x^{2} \right] \psi \left( x\right) =E\psi \left( x\right) ,\,1<\alpha \le 2. \end{aligned}$$
(57)

According to the factorization algorithm, we have the following: consider a pair of operators \(A_{\alpha }\) and \(B_{\alpha }\) such that

$$\begin{aligned} H_{\alpha }=B_{\alpha }A_{\alpha }+\epsilon _{\alpha } \end{aligned}$$
(58)

where \(\epsilon _{\alpha }\) can be a fractional-differential operator. The operators \(A_{\alpha }\), \(B_{\alpha }\) and \(\epsilon _{\alpha }\) are written as

$$\begin{aligned} A_{\alpha }=\frac{1}{\sqrt{\alpha }}\left( \frac{{\mathrm{{d}}}^{\alpha /2}}{{\text {d}}x^{\alpha /2}}+x\right) , \end{aligned}$$
(59)
$$\begin{aligned} B_{\alpha }=\frac{1}{\sqrt{\alpha }}\left( -\frac{{\mathrm{{d}}}^{\alpha /2}}{{\text {d}}x^{\alpha /2}}+x\right) , \end{aligned}$$
(60)
$$\begin{aligned} \epsilon _{\alpha }=\frac{1}{2}\frac{{\mathrm{{d}}}^{\alpha /2-1}}{{\text {d}}x^{\alpha /2-1}}. \end{aligned}$$
(61)

The method consists to solve the kernel equation of

$$\begin{aligned} A_{\alpha }\psi _{0}^{\alpha }=0\rightarrow \left( \frac{{\mathrm{{d}}}^{\alpha /2}}{{\text {d}}x^{\alpha /2}}+x\right) \psi _{0}^{\alpha }=0. \end{aligned}$$
(62)

Then, this fractional derivative equation will solve it in the momentum representation p. In this stage, Rosu and Macans [31] have used the Fourier transform of the Riesz–Feller derivative \(d^{\alpha }/{\text {d}}x^{\alpha }\). The authors have been inspired by the works of Berman and Moiseyev [35] for their studies on the exceptional points in the Riesz–Feller Hamiltonian with an impenetrable rectangular potential [35]. As we known, the Fourier transform and its inversion are given by

$$\begin{aligned} f\left( k\right) ={\mathcal {F}}\left[ f\left( x\right) ,k\right] = \int _{-\infty }^{+\infty }f\left( x\right) e^{ikx}{\text {d}}x, \end{aligned}$$
(63)
$$\begin{aligned} f\left( x\right) ={\mathcal {F}}^{-1}\left[ f\left( k\right) ,x\right] = \frac{1}{2\pi }\int _{-\infty }^{+\infty }f\left( k\right) e^{-ikx}{\text {d}}x. \end{aligned}$$
(64)

Now, the Riesz–Feller fractional derivative \(_{x}D_{\theta }^{\alpha }\) is defined through a relation [36]

$$\begin{aligned} {\mathcal {F}}\left[ _{x}D_{\theta }^{\alpha }\psi \left( x\right) ,k\right] = -\Psi _{\alpha }^{\theta }\left( k\right) \varPhi \left( k\right) , \end{aligned}$$
(65)

where

$$\begin{aligned} _{x}D_{\theta }^{\alpha }\psi \left( x\right) =-\frac{1}{2\pi } \int _{-\infty }^{+\infty }\Psi _{\alpha }^{\theta }\left( k\right) e^{-ikx}{\text {d}}x \int \psi \left( x'\right) e^{ikx'}{\text {d}}x', \end{aligned}$$
(66)

and

$$\begin{aligned} \Psi _{\alpha }^{\theta }\left( k\right) = \left| k\right| ^{\alpha }e^{i{\text {sign}}\left( k\right) \frac{\theta \pi }{2}},\, 0<\alpha \le 2,\,{\text {and}}\,\left| \theta \right| \le \min \left\{ \alpha ,2-\alpha \right\} . \end{aligned}$$
(67)

The allowed region for the parameters \(\alpha\) and \(\theta\) turns out to be a diamond in the plane \(\left( \alpha ,\theta \right)\) that are called the Feller–Takayasu diamond [31, 35, 37].

Thus, Eqs. (59) and (60) become

$$\begin{aligned} A_{k,\alpha }=\psi _{\alpha /2}^{\theta }+i\frac{{\mathrm{{d}}}}{{\text {d}}k},\,B_{k,\alpha }= \psi _{\alpha /2}^{\theta }-i\frac{{\mathrm{{d}}}}{{\text {d}}k}, \end{aligned}$$
(68)

and the solutions of the kernel \(A_{k,\alpha }\) are

$$\begin{aligned} \phi _{0}^{\alpha }=e^{-\frac{\left| k\right| ^{\alpha /2+1}}{\alpha /2+1}}. \end{aligned}$$
(69)

The others solutions are found by the repeated usage of the operator \(B_{k,\alpha }\).

Table 2 The first four form of \({\tilde{H}}_{n}\) [31]

Rosu and Mancas have proved one can write

$$\begin{aligned} \phi _{n}\left( k\right) =i^{n}{\tilde{H}}_{n}\phi _{0}^{\alpha } \end{aligned}$$
(70)

where \({\tilde{H}}_{n}\) are the fractionally deformed Hermite polynomials (some form of this function are listed in Table 2). They also call Riesz–Feller Hermite polynomials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korichi, N., Boumali, A. & Chargui, Y. Statistical Properties of the 1D Space Fractional Klein–Gordon Oscillator. J Low Temp Phys 206, 32–50 (2022). https://doi.org/10.1007/s10909-021-02638-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02638-z

Keywords

Navigation