Skip to main content
Log in

Magneto-Transport Properties of the Ag Doping Sr Site in La0.57Nd0.1Sr0.33−xAgxMnO3 (0.00 and 0.15) Manganites

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work we investigate the effect of Ag+ doping at Sr2+ site in La0.57Nd0.1Sr0.33−xAgxMnO3 (LNSAMOx, x = 0.00 and 0.15) system on the magnetic and magneto-electrical properties. The variation of the magnetization M versus temperature T, at 0.05 T, reveals a ferromagnetic–paramagnetic transition for all samples. All samples undergo a sharp metal–semiconductor transition at a temperature Tρ, accompanying the ferromagnetic–paramagnetic transition. The maximum values of resistivity temperature coefficient (TCR) and magneto-resistance were 2.5% K−1 and 63% at room temperature of 290 K and 305 K, respectively. The TCR value is considered as an important factor in determining the sensitivity of uncooled infrared bolometers. Most interesting is that the adjustment of the low-temperature range ρT revealed the presence of low-temperature peaks in the resistivity curves, attributed to the diffusion effects of grain boundaries, electron–electrons, electron–magnon, electron–phonons and the interactions between them. Overall, LNSAMOx polycrystalline ceramics appear promising for uncooled infrared detectors, magnetic memories or magnetic storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N. Abdelmoula, E. Dhahri, N. Fourati, L. Reversat, J. Alloys Compd. 365(1–2), 25 (2004)

    Article  Google Scholar 

  2. Y. Liu, T. Sun, G. Dong, S. Zhang, Q. Chen, X. Liu, Ceram. Int. 45, 15466 (2019)

    Article  Google Scholar 

  3. A. Benali, S. Azizi, M. Bejar, E. Dhahri, M.F.P. Graça, Ceram. Int. 40(9 Part A), 14367 (2014)

    Article  Google Scholar 

  4. V.P.S. Awana, R. Tripathi, N. Kumar, H. Kishan, G.I. Bhalla, R. Zeng, L.S.S. Chandra, V. Ganesan, H.U. Habermeier, J. Appl. Phys. 107(1–3), 09D723 (2010)

    Article  Google Scholar 

  5. T. Samanta, I. Das, S. Banerjee, Appl. Phys. Lett. 91(1–3), 082511 (2007)

    Article  ADS  Google Scholar 

  6. R.N. Mahato, K. Sethupathi, V. Sankaranarayanan, R. Nirmala, J. Magn. Magn. Mater. 322, 2537 (2010)

    Article  ADS  Google Scholar 

  7. A. Urushibara, Y. Moritomo, T. Arima, A. Asamisu, G. Kido, Y. Tokura, Phys. Rev. B 51, 14103 (1995)

    Article  ADS  Google Scholar 

  8. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  9. W. Boujelben, A. Cheikh-Rouhou, M. Ellouze, J.C. Joubert, Phys. Status Solidi A 177, 914 (2000)

    Article  Google Scholar 

  10. T. Tao, Q.Q. Cao, K.M. Gu, H.Y. Xu, S.Y. Zhang, Y.W. Du, Appl. Phys. Lett. 77, 726 (2000)

    Article  ADS  Google Scholar 

  11. H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Phys. Rev. Lett. 75, 914 (1995)

    Article  ADS  Google Scholar 

  12. L. Pi, M. Hervieu, A. Maignan, C. Martin, B. Raveau, Solid State Commun. 126, 229 (2003)

    Article  ADS  Google Scholar 

  13. C. Boudaya, L. Laroussi, E. Dhahri, J.C. Joubert, A. Cheikhrouhou, J. Phys. Condens. Matter 10, 7485 (1998)

    Article  ADS  Google Scholar 

  14. P. Ghigna, A. Carollo, G. Flor, L. Malavasi, G. Subias Peruga, J. Phys. Chem. B 109, 4365 (2005)

    Article  Google Scholar 

  15. G.H. Rao, J.R. Sun, K. Barner, N. Hamad, J. Phys. Condens. Matter 11, 1523 (1999)

    Article  ADS  Google Scholar 

  16. N. Abdelmoula, L. Reversat, A. Cheikhrouhou, J. Phys. Condens. Matter 13, 449 (2001)

    Article  ADS  Google Scholar 

  17. S. Zemni, J. Dhahri, K. Cherif, J. Dhahri, M. Oumezzine, M. Ghedira, H. Vincent, J. Alloys Compd. 392, 55 (2005)

    Article  Google Scholar 

  18. S. Bhattacharya, S. Pal, R.K. Mukherjee, B.K. Chaudhuri, S. Neeleshwar, Y.Y. Chen, H.D. Yang, J. Magn. Magn. Mater. 269, 359 (2004)

    Article  ADS  Google Scholar 

  19. A. Bhattacharya, S.J. May, Annu. Rev. Mater. Res. 44, 65 (2014)

    Article  ADS  Google Scholar 

  20. J. Kondo, Prog. Theor. Phys. 32, 37 (1964)

    Article  ADS  Google Scholar 

  21. M. Ziese, Phys. Rev. B 68, 132411 (2003)

    Article  ADS  Google Scholar 

  22. D. Kumar, J. Sankar, J. Narayan, R.K. Singh, A.K. Majumdar, Phys. Rev. B 65, 094407 (2002)

    Article  ADS  Google Scholar 

  23. A. Dutta, N. Gayathri, R. Ranganathan, Phys. Rev. B 68, 054432 (2003)

    Article  ADS  Google Scholar 

  24. Y.R.S. Choudhary, S. Mangavati, S. Patil, A. Rao, B.S. Nagaraja, R. Thomas, G.S. Okram, S.G. Kini, J. Magn. Magn. Mater. 451, 110 (2018)

    Article  ADS  Google Scholar 

  25. A. Krichene, W. Boujelben, S. Mukherjee, P.S. Solanki, N.A. Shah, Acta Mater. 131, 491 (2017)

    Article  Google Scholar 

  26. P. Schiffer, A.P. Ramirez, W. Bao, S.W. Cheong, Phys. Rev. Lett. 75, 3336 (1995)

    Article  ADS  Google Scholar 

  27. J. Khelifi, A. Tozri, F. Issaoui, E. Dhahri, E.K. Hlil, Ceram. Int. 40, 1641 (2014)

    Article  Google Scholar 

  28. A. Dhahri, M. Jemmali, E. Dhahri, E.K. Hlil, Dalton Trans. 44, 5620 (2015)

    Article  Google Scholar 

  29. S.B. Li, C.B. Wang, D.Q. Zhou, H.X. Liu, L. Li, Q. Shen, L.M. Zhang, Ceram. Int. 44, 550 (2018)

    Article  Google Scholar 

  30. K. Kubo, N. Ohata, A quantum theory of double exchange. J. Phys. Soc. Jpn. 33, 21 (1992)

    Article  ADS  Google Scholar 

  31. A. De Andres, M. Garcia-Hernandez, J.L. Martinez, C. Preito, Appl. Phys. Lett. 74, 3884 (1999)

    Article  ADS  Google Scholar 

  32. A. De Andres, M. Garcia-Hemandez, J.L. Martinez, Phys. Rev. B 60, 7328 (1999)

    Article  ADS  Google Scholar 

  33. M. Jaime, M.B. Salamon, M. Rubinstein, R.E. Treece, J.S. Horwitz, D.B. Chrisey, Phys. Rev. B 54, 11914 (1996)

    Article  ADS  Google Scholar 

  34. H.L. Ju, H. Sohn, Solid State Commun. 102, 463 (1997)

    Article  ADS  Google Scholar 

  35. S. Ju, H. Sun, Z.Y. Li, Phys. Lett. A 300, 666 (2002)

    Article  ADS  Google Scholar 

  36. M. Khlifi, E. Dhahri, E.K. Hlil, J. Alloys Compd. 587, 771 (2014)

    Article  Google Scholar 

  37. Y. Sun, W. Tong, X. Xu, Y. Zhang, Appl. Phys. Lett. 78(5), 643 (2001)

    Article  ADS  Google Scholar 

  38. F. Elleuch, M. Triki, M. Bekri, E. Dhahri, E.K. Hlil, J. Alloys Compd. 620, 249 (2015)

    Article  Google Scholar 

  39. T.G. Perring, G. Aeppli, T. Kimura, Y. Tokura, M.A. Adams, Phys. Rev. B 58, R14693 (1998)

    Article  ADS  Google Scholar 

  40. R. Mahesh, R. Mahendiran, A.K. Raychaudhuri, C.N.R. Rao, J. Solid State Chem. 114, 297 (1995)

    Article  ADS  Google Scholar 

  41. M. Smari, R. Hamouda, I. Walha, E. Dhahri, F.J. Mompeán, M. García-Hernández, J. Alloys Compd. 644(25), 632 (2015)

    Article  Google Scholar 

  42. J. Wu, S.-Y. Zhang, Chin. Phys. Lett. 21(2), 382 (2004)

    Article  ADS  Google Scholar 

  43. Y.-H. Huang, C.-H. Yan, F. Luo, W. Song, Z.-M. Wang, C.-S. Liao, Appl. Phys. Lett. 81, 76 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research within the framework of the Tunisian-Portuguese cooperation in the field of scientific research and technology. This work was supported by national funds from FCT – Fundação para a Ciência e a Tecnologia, I.P., within the project UID/04564/2020. Access to TAIL-UC facility funded under QREN-Mais Centro Project No. ICT_2009_02_012_1890 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dhahri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marouani, Y., Gharbi, S., Issaoui, F. et al. Magneto-Transport Properties of the Ag Doping Sr Site in La0.57Nd0.1Sr0.33−xAgxMnO3 (0.00 and 0.15) Manganites. J Low Temp Phys 200, 131–141 (2020). https://doi.org/10.1007/s10909-020-02481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02481-8

Keywords

Navigation