Skip to main content
Log in

Modeling of Magnetic, Magnetocaloric Properties and Dielectrical Characterization of (La0.75Nd0.25)2/3(Ca0.8Sr0.2)1/3MnO3 Manganite Oxide

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In the present work, we aim to analyze the magnetocaloric and electrical properties of (La0.75Nd0.25)2/3(Ca0.8Sr0.2)1/3MnO3 manganite prepared by solid-state method at high temperature. The experimental results of the magnetization show that the (La0.75Nd0.25)2/3(Ca0.8Sr0.2)1/3MnO3 compound exhibits a paramagnetic–ferromagnetic transition at TC = 240 K. In addition to the experimental study, theoretical approaches are adopted to investigate the magnetocaloric behavior of this sample. The important parameters such as maximum entropy change, full width at half maximum (δTFWHM) and relative cooling power are explained qualitatively. The electrical properties of the studied sample have been investigated by using a complex impedance spectroscopy technique. These electrical measurements reveal that (La0.75Nd0.25)2/3(Ca0.8Sr0.2)1/3MnO3 sample exhibits a metallic behavior at low temperature and insulator one at high temperature. The temperature (TMI) of the metal–insulator transition is found to be about 240 K. The effects of frequency, temperature and composition on permittivity ε′, ε″ and dielectric loss (tanδ) have been also discussed in terms of hopping of charge carriers between Mn3+ and Mn4+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Baaziz, A. Tozri, E. Dhahri, E.K. Hlil, Chem. Phys. Lett. 625, 168 (2015)

    Article  ADS  Google Scholar 

  2. M. Khelifi, R. M’nassri, A. Selmi, H. Rahmouni, K. Khirouni, N. ChnibaBoudjada, A. Cheikhrouhou, J. Magn. Magn. Mater. 423, 20 (2017)

    Article  ADS  Google Scholar 

  3. M. Triki, E. Dhahri, E.K. Hlil, J.L. Garden, J. Appl. Phys. 115, 103709 (2014)

    Article  ADS  Google Scholar 

  4. M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308, 325 (2007)

    Article  ADS  Google Scholar 

  5. M. Smari, I. Walha, E. Dhahri, E.K. Hlil, J. Alloys Compd. 579, 564–571 (2013)

    Article  Google Scholar 

  6. A. Fujita, S. Koiwai, S. Fujieda, K. Fukamichi, T. Kobayashi, H. Tsuji, S. Kaji, A.T. Saito, J. Appl. Phys. 105, 07A936 (2009)

    Article  Google Scholar 

  7. D.T. CamThanh, E. Brück, O. Tegus, J.C.P. Klaasse, T.J. Gortenmulder, K.H.J. Buschow, J. Appl. Phys. 99, 08Q107 (2006)

    Article  Google Scholar 

  8. A. Kitanovski, P.W. Egolf, J. Magn. Magn. Mater. 321, 777 (2009)

    Article  ADS  Google Scholar 

  9. V.S. Kolat, H. Gencer, M. Gunes, S. Atalay, Mater. Sci. Eng. B 140, 212 (2007)

    Article  Google Scholar 

  10. Z.C. Xia, S.L. Yuan, W. Feng, L.J. Zhang, G.H. Zang, J. Tang, L. Liu, D.W. Liu, Q.H. Zheng, L. Chen, Z.H. Fang, S. Liu, C.Q. Tang, Solid State Commun. 127, 567–572 (2003)

    Article  ADS  Google Scholar 

  11. N. Khare, D.P. Singh, H.K. Singh, A.K. Gupta, P.K. Siwach, O.N. Srivastava, J. Phys. Chem. Solids 65, 867 (2004)

    Article  ADS  Google Scholar 

  12. A. Nucara, F. Miletto Granozio, W.S. Mohamed, A. Vecchione, R. Fittipaldi, P.P. Perna, M. Radovic, F.M. Vitucci, P. Calvani, Phys. B Condens. Matter. 433, 102 (2014)

    Article  ADS  Google Scholar 

  13. I. Walha, M. Smari, T. Mnasri, E. Dhahri, J. Magn. Magn. Mater. 454, 190–195 (2018)

    Article  Google Scholar 

  14. N. Zaidi, S. Mnefgui, A. Dhahri, J. Dhahri, E.K. Hlil, Phys. B Condens. Matter. 450, 155 (2014)

    Article  ADS  Google Scholar 

  15. Y. Bitla, S.N. Kaul, L. Fernández Barquín, Phys. B Condens. Matter. 448, 223–225 (2014)

    Article  ADS  Google Scholar 

  16. S. Vadnala Rao, T. Durga, P. Pal, S. Asthana, Phys. B Condens. Matter. 448, 277 (2014)

    Article  ADS  Google Scholar 

  17. J. Khelifi, A. Tozri, F. Issaoui, E. Dhahri, E.K. Hlil, Ceram. Int. 40, 1641 (2014)

    Article  Google Scholar 

  18. J. Khelifi, E. Dhahri, E.K. Hlil, Solid State Commun. 249, 19 (2017)

    Article  ADS  Google Scholar 

  19. H. Gencer, M. Pektas, Y. Babur, V.S. Kolat, T. Izgi, S. Atalaya, J. Magn. Magn. Mater. 17, 176 (2012)

    Google Scholar 

  20. L. Lakshmi, V. Seetha, D.V. Sridharan, R. Natarajan, S. Rawat, V. Chandra, S. Sankara, T.S. Radhakrishnan, J. Magn. Magn. Mater. 279, 41 (2004)

    Article  ADS  Google Scholar 

  21. R. Ganguly, I.K. Gopalakrishnan, J.V. Yakhmi, Phys. B 275, 308 (2000)

    Article  ADS  Google Scholar 

  22. T. Barbier, C. Autret-Lambert, C. Honstrette, F. Gervais, M. Lethiecq, Mater. Res. Bull. 47, 4427 (2012)

    Article  Google Scholar 

  23. J. Khelifi, E. Dhahri, E.K. Hlil, Phase Transit. 91, 1246 (2018)

    Article  Google Scholar 

  24. K. Raju, N.P. Kumar, P.V. Reddy, D.H. Yoon, Phys. Lett. A 379, 1178 (2015)

    Article  ADS  Google Scholar 

  25. A.A. Mohamed, V. Vega, M. Ipatov, A.M. Ahmed, B. Hernando, J. Alloys Compd. 657, 495 (2016)

    Article  Google Scholar 

  26. H. Yang, Y.H. Zhu, T. Xian, J.L. Jiang, J. Alloys Compd. 555, 150 (2013)

    Article  Google Scholar 

  27. J. Khelifi, A. Tozri, E. Dhahri, Appl. Phys. A 116, 1041 (2014)

    Article  ADS  Google Scholar 

  28. M. PekaŁa, V. Drozd, J.F. Fagnard, P. Vanderbemden, M. Ausloos, Appl. Phys. A 90, 237 (2008)

    Article  ADS  Google Scholar 

  29. M.A. Hamad, Phase Transit. 85, 106 (2011)

    Article  Google Scholar 

  30. V. Franco, J.S. Blazquez, A. Conde, J. Appl. Phys. B 103, 07B316 (2008)

    Article  Google Scholar 

  31. A. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  32. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  33. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  34. N.K. Singh, A. Panigrahi, R.N.P. Chaudhary, Mater. Lett. 50, 1 (2001)

    Article  Google Scholar 

  35. T. Kar, R.N.P. Chaudhary, Mater. Sci. Eng. B 90, 224 (2002)

    Article  Google Scholar 

  36. S. Kulkarni, B.M. Nagabhushana, N. Parvatikar, A. Koppalkar, C. Shivakumara, R. Damle, Mater. Res. Bull. 50, 197 (2014)

    Article  Google Scholar 

  37. V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyera, M. Tabellout, M. Gevais, F. Gevais, Mater. Sci. Eng. B 129, 135 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by: The Tunisian Ministry of Higher Education and Scientific Research. The French Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Khelifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouikhi, S., Khelifi, J., Nasri, M. et al. Modeling of Magnetic, Magnetocaloric Properties and Dielectrical Characterization of (La0.75Nd0.25)2/3(Ca0.8Sr0.2)1/3MnO3 Manganite Oxide. J Low Temp Phys 197, 471–484 (2019). https://doi.org/10.1007/s10909-019-02239-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02239-x

Keywords

Navigation