Skip to main content
Log in

Magnetic, Magnetocaloric and Correlation with Critical Behavior in Pr0.8Sr0.2MnO3 Compound Prepared via Solid-State Reaction

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this study, the critical behavior and magnetic and magnetocaloric properties in a polycrystalline Pr0.8Sr0.2MnO3 sample synthesized by solid-state technique were investigated in detail. By analyzing the temperature and the field dependence of magnetization, we have demonstrated that this compound exhibits a clear second-order magnetic phase transition around the Curie temperature estimated at TC = 161 K. Refined values of the critical exponents β, γ and δ determined by the modified Arrott plots, the critical isotherm and Kouvel–Fisher analysis show that our compound is described by the 3D Ising model. The reliability of these critical exponents was further confirmed using the universal scaling hypothesis. Under an applied magnetic field of 5 T, the calculated value of the maximum of the magnetic entropy change is estimated at 1.740 J K−1 kg−1 and the relative cooling power (RCP) turns out to be 134.46 J kg−1. Moreover, the critical exponents were evaluated from RCP results which confirm the correlation between the critical behavior and magnetocaloric results in the Pr0.8Sr0.2MnO3 compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.B.J. Kharrat, M. Bourouina, N. Moutia, K. Khirouni, W. Boujelben, Gd doping effect on impedance spectroscopy properties of sol–gel prepared Pr0.5−xGdxSr0.5MnO3 (0 ≤ x ≤ 0.3) perovskites. J. Alloys Compd. 741, 723–733 (2018)

    Google Scholar 

  2. V. Markovich, I. Fita, R. Puzniak, A. Wisniewski, K. Suzuki, J.W. Cochrane, Y. Yuzhelevskii, Y.M. Mukovskii, G. Gorodetsky, Pressure effects on the magnetic and transport properties of Pr1−xSrxMnO3 crystals near the percolation threshold. Phys. Rev. B 71, 224409 (2005)

    ADS  Google Scholar 

  3. H.E. Sekrafi, A.B.J. Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, Impact of low titanium concentration on the structural, electrical and dielectric properties of Pr0.75Bi0.05Sr0.1Ba0.1Mn1−xTixO3 (x = 0,0.04) compounds. J. Mater. Sci. Mater. Electron. 30, 876 (2019)

    Google Scholar 

  4. D.C. Krishna, P.V. Reddy, Magnetic transport behavior of nano-crystalline Pr0.67A0.33MnO3 (A = Ca, Sr, Pb and Ba) manganites. J. Alloys Compd. 479, 661–669 (2009)

    Google Scholar 

  5. A.B.J. Kharrat, M. Bourouina, N. Chniba-Boudjada, W. Boujelben, Critical behaviour of Pr0.5−xGdxSr0.5MnO3 (0 ≤ x ≤ 0.1) manganite compounds: correlation between experimental and theoretical considerations. Solid State Sci. 87, 27 (2019)

    ADS  Google Scholar 

  6. S. Hcini, R. Charguia, A. Dhahri, M.L. Bouazizi, Bouazizi, structural analysis, magnetocaloric effect, and critical exponents for La0.6Sr0.2Na0.2MnO3 anganite. J. Supercond. Nov. Magn. (2019). https://doi.org/10.1007/s10948-018-988-x

    Article  Google Scholar 

  7. L. Li, H. Zhang, X. Liu, P. Sun, C. Wang, X. Wang, B. Li, G. Liang, Q. Chen, Structure and electromagnetic properties of La0.7Ca0.3−xKxMnO3 polycrystalline ceramics. Ceram. Int. 45, 10558–10564 (2019)

    Google Scholar 

  8. A. Rinkevich, A. Nosov, M.B. Rigmant, V.G. Vasil’ev, E.V. Vladimirova, Magnetic-field sensors based on lead-doped lanthanum manganites. Russ. J. Nondestr. Test. 42, 516–524 (2006)

    Google Scholar 

  9. L.M. Rodriguez-Martinez, J.P. Attfield, Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54, R15622–R15625 (1996)

    ADS  Google Scholar 

  10. A.B.J. Kharrat, N. Moutia, K. Khirouni, W. Boujelben, Investigation of electrical behavior and dielectric properties in polycristalline Pr0.8Sr0.2MnO3 manganite perovskite. Mater. Res. Bull. 105, 75–83 (2018)

    Google Scholar 

  11. A.B.J. Kharrat, K. Khirouni, W. Boujelben, Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr0.8Sr0.2MnO3 manganite prepared by modified solid-state route. Phys. Lett. A 382, 3435–3448 (2018)

    ADS  Google Scholar 

  12. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)

    ADS  Google Scholar 

  13. F. He, Z. Mao, L. Tang, J. Zhang, X. Chen, The Jahn–Teller distortion influenced ferromagnetic order in Pr1−xLaxMnO3. Solid State Commun. 274, 21–26 (2018)

    ADS  Google Scholar 

  14. S.N. Kaul, Static critical phenomena in ferromagnets with quenched disorder. J. Magn. Magn. Mater. 53, 5–53 (1985)

    ADS  Google Scholar 

  15. K. Huang, Statistical Mechanics, 2nd edn. (Wiley, New York, 1987)

    MATH  Google Scholar 

  16. A.B.J. Kharrat, E.K. Hlil, W. Boujelben, Tuning the magnetic and magnetotransport properties of Pr0.8Sr0.2MnO3 manganites through Bi-doping. Mater. Res. Express 5, 126107 (2018)

    ADS  Google Scholar 

  17. H.E. Sekrafi, A.B.J. Kharrat, M.A. Wederni, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Structural, electrical, dielectric properties and conduction mechanism of sol–gel prepared Pr0.75Bi0.05Sr0.1Ba0.1Mn0.98Ti0.02O3 compound. Mater. Res. Bull. 111, 329–337 (2019)

    Google Scholar 

  18. S.V. Trukhanova, I.O. Troyanchuka, N.V. Pushkareva, H. Szymczakb, The influence of oxygen deficiency on the magnetic and electric properties of La0.70Ba0.30MnO3–δ(0 ≤ δ ≤0 .30) manganite with a perovskite structure. J. Exp. Theor. Phys. 95, 308 (2002)

    ADS  Google Scholar 

  19. J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 192, 55 (1993)

    ADS  Google Scholar 

  20. A.K. Pramanik, A. Banerjee, Phase separation and the effect of quenched disorder in Pr0.5Sr0.5MnO3. J. Phys. Condens. Matter 20, 275207 (2008)

    Google Scholar 

  21. B. Christopher, A. Rao, V.C. Petwal, I.P. Verma, J. Dwivedi, W.J. Lin, Y.-K. Kuo, Influence of electron beam irradiation on electrical, structural, magnetic and thermal properties of Pr0.8Sr0.2MnO3 manganites. Phys. B 502, 119–131 (2016)

    ADS  Google Scholar 

  22. C. Martin, A. Maignan, M. Hervieu, B. Raveau, Magnetic phase diagrams of L1−xAxMnO3 manganites (L = Pr, Sm; A = Ca, Sr). Phys. Rev. B 60, 12191–12199 (1999)

    ADS  Google Scholar 

  23. M. Bourouina, A. Krichene, N. Chniba-Boudjada, M. Khitouni, W. Boujelben, Structural, magnetic and magnetocaloric properties of nanostructured Pr0.5Sr0.5MnO3 manganite synthesized by mechanical alloying. Ceram. Int. 43, 8139–8145 (2017)

    Google Scholar 

  24. L.E. Hueso, J. Rivas, F. Rivadulla, M.A. Lopez-Quintela, Tuning of the magnetocaloric effect in La0.67Ca0.33MnO3−δ nanoparticles synthesized by sol–gel techniques. J. Appl. Phys. 86, 3881 (1999)

    ADS  Google Scholar 

  25. N. Zhang, W. Ding, W. Zhong, W. Yang, Y. Du, J. Phys. Condens. Matter 9, 4281 (1997)

    ADS  Google Scholar 

  26. J. Fontcuberta, B. Martinez, A. Seffar, S. Pinol, J.L. Garcia-Munoz, X. Obradors, Colossal magnetoresistance of ferromagnetic manganites: structural tuning and mechanisms. Phys. Rev. Lett. 76, 1122–1125 (1996)

    ADS  Google Scholar 

  27. H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914–917 (1995)

    ADS  Google Scholar 

  28. A. Jerbi, A. Krichene, N. Chniba-Boudjada, W. Boujelben, Magnetic and magnetocaloric study of manganite compounds Pr0.5A0.05Sr0.45MnO3 (A = Na and K) and composite. Phys. B 477, 75–82 (2015)

    ADS  Google Scholar 

  29. A. Elghoul, A. Krichene, N. Chniba-Boudjada, W. Boujelben, Rare earth effect on structural, magnetic and magnetocaloric properties of La0.75Ln0.05Sr0.2MnO3 manganites. Ceram. Int. 44, 12723–12730 (2018)

    Google Scholar 

  30. S.K. Banerjee, On a generalized approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)

    ADS  Google Scholar 

  31. A. Arrott, J.E. Noakes, Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786 (1967)

    ADS  Google Scholar 

  32. G. Huo, Y. Chang, X. Li, Z. Li, H. Li, Critical behavior and magnetocaloric effect in La0.67Sr0.33MnO3.01 compounds. Solid State Sci. 87, 15–20 (2019)

    ADS  Google Scholar 

  33. M.E. Fisher, The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30, 615 (1967)

    ADS  Google Scholar 

  34. B. Widom, Surface tension and molecular correlations near the critical point. J. Chem. Phys. 43, 3892 (1965)

    ADS  Google Scholar 

  35. J.S. Kouvel, M.E. Fisher, Detailed magnetic behavior of nickel near its curie point. Phys. Rev. 136, A1626 (1964)

    ADS  Google Scholar 

  36. Z.G. Zheng, X.C. Zhong, H.Y. Yu, V. Franco, Z.W. Liu, D.C. Zeng, The magnetocaloric effect and critical behavior in amorphous Gd60Co40−xMnx alloys. J. Appl. Phys. 111, 07A922 (2012)

    Google Scholar 

  37. J. Fan, L. Pi, L. Zhang, W. Tong, L. Ling, Investigation of critical behavior in Pr0.55Sr0.45MnO3 by using the field dependence of magnetic entropy change. Appl. Phys. Lett. 98, 072508–072514 (2011)

    ADS  Google Scholar 

  38. M. Baazaoui, S. Hcini, M. Boudard, S. Zemni, M. Oumezzine, Critical behavior near the ferromagnetic-paramagnetic phase transition temperature of Pr0.67Ba0.33Mn1−xFexO3 (x = 0 and 0.05) manganite. J. Magn. Magn. Mater. 401, 323–332 (2016)

    ADS  Google Scholar 

  39. J. Yang, Y.P. Lee, Critical behavior in Ti-doped manganites LaMn1−xTixO3 (0.05 ⩽ x ⩽ 0.2). Appl. Phys. Lett. 91, 142512–142525 (2007)

    ADS  Google Scholar 

  40. Z. Wang, J. Jiang, Magnetic entropy change in perovskite manganites La0.7A0.3MnO3 La0.7A0.3 Mn0.9Cr0.1O3 (A = Sr, Ba, Pb) and Banerjee criteria on phase transition. Solid State Sci. 18, 36–41 (2013)

    ADS  Google Scholar 

  41. A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati, J.M.D. Coey, Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature. J. Magn. Magn. Mater. 323, 2214–2218 (2011)

    ADS  Google Scholar 

  42. M.-H. Phan, S.-C. Yu, N.H. Hur, Y.-H. Yeong, Large magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. J. Appl. Phys. 96, 1154 (2004)

    ADS  Google Scholar 

  43. M.H. Phan, H.X. Peng, S.C. Yu, D.T. Hanh, N.D. Tho, N. Chau, Large magnetocaloric effect in Pr1−xPbxMnO3 (0.1 ⩽ x ⩽ 0.5) Perovskites. J. Appl. Phys. 99, 08Q108 (2006)

    Google Scholar 

  44. F.B. Jemaa, S.H. Mahmood, M. Ellouze, E.K. Hlil, F. Halouani, Structural, magnetic, magnetocaloric, and critical behavior of selected Ti-doped manganites. Ceram. Int. 41, 8191–8202 (2015)

    Google Scholar 

  45. D.L. Rocco, R.A. Silva, A.M.G. Carvalho, A.A. Coelho, J.P. Andreeta, S. Gama, Magnetocaloric effect of La0.8Sr0.2MnO3 compound under pressure. J. Appl. Phys. 97, 10M317 (2005)

    Google Scholar 

  46. A. Nasri, E.K. Hlil, A.-F. Lehlooh, M. Ellouze, F. Elhalouani, Study of magnetic transition and magnetic entropy changes of Pr0.6Sr0.4MnO3 and Pr0.6Sr0.4Mn0.9Fe0.1O3 compounds. Eur. Phys. J. Plus 131, 110 (2016)

    Google Scholar 

  47. H. Mbarek, R. M’nasri, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Magnetocaloric effect near room temperature in (1 − y)La0.8Ca0.05K0.15MnO3/yLa0.8K0.2MnO3 composites. Phys. Status Solidi A 211, 975 (2014)

    ADS  Google Scholar 

  48. V.K. Pecharsky, K.A. Gschneidner, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)

    ADS  Google Scholar 

  49. Y. Xu, M. Meier, P. Das, M.R. Koblischka, U. Hartmann, Perovskite manganites: potential materials for magnetic cooling at or near room temperature. Cryst. Eng. 5, 383–389 (2002)

    Google Scholar 

  50. Q.Y. Dong, H.W. Zhang, J.R. Sun, B.G. Shen, V. Franco, A phenomenological fitting curve for the magnetocaloric effect of materials with a second-order phase transition. J. Appl. Phys. 103, 116101–116101–116101–116103 (2008)

    Google Scholar 

  51. H. Oesterreicher, F.T. Parker, Magnetic cooling near Curie temperatures above 300 K. J. Appl. Phys. 55, 4334 (1984)

    ADS  Google Scholar 

  52. V. Franco, J.S. Blázquez, A. Conde, The influence of Co addition on the magnetocaloric effect of Nanoperm-type amorphous alloys. Appl. Phys. Lett. 100, 064307 (2006)

    Google Scholar 

  53. V. Franco, J.S. Blázquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512–222513 (2006)

    ADS  Google Scholar 

  54. V. Franco, A. Conde, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials. Int. J. Refrig. 33, 465–473 (2010)

    Google Scholar 

  55. V. Franco, A. Conde, M.D. Kuz’min, J.M. Romero-Enrique, The magnetocaloric effect in materials with a second order phase transition: are T C and T peak necessarily coincident? J. Appl. Phys. 105, 917 (2009)

    Google Scholar 

  56. V. Franco, A. Conde, J.M. Romero-Enrique, J.S. Blazques, A universal curve for the magnetocaloric effect: an analysis based on scaling relations. J. Phys. Condens. Matter 20, 285207 (2008)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Jazia Kharrat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Jazia Kharrat, A., Boujelben, W. Magnetic, Magnetocaloric and Correlation with Critical Behavior in Pr0.8Sr0.2MnO3 Compound Prepared via Solid-State Reaction. J Low Temp Phys 197, 357–378 (2019). https://doi.org/10.1007/s10909-019-02223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02223-5

Keywords

Navigation