Skip to main content

Advertisement

Log in

Trigger Study on the AMoRE-Pilot Detector

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present a systematic trigger study for the Advanced Molybdenum-based Rare process Experiment (AMoRE), an international project searching for the neutrinoless double beta decay (\(0\nu \beta \beta \)) of \(^{100}\hbox {Mo}\). AMoRE utilizes a heat and light detection method at millikelvin temperatures. A detector module of AMoRE is composed of a large crystal absorber and metallic magnetic calorimeter temperature sensors. We applied a software filter with various conditions to the continuously saved data from the current AMoRE setup. With a trigger level set to 5 times the standard deviation of the noise signals resulting from a Butterworth filter, an energy threshold, defined as the energy of the signals leading to a 50% trigger efficiency, was found to be 2.2 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.J. Lee et al., Astropart. Phys. 34, 732 (2011). https://doi.org/10.1016/j.astropartphys.2011.01.004

    Article  ADS  Google Scholar 

  2. V. Alenkov et al., (AMoRE Collaboration). arXiv:1512.05957 [physics.ins-det] (2015)

  3. G.B. Kim et al., Astropart. Phys. 91, 105 (2017). https://doi.org/10.1016/j.astropartphys.2017.02.009

    Article  ADS  Google Scholar 

  4. C. Enss et al., J. Low Temp. Phys. 121, 137 (2000). https://doi.org/10.1023/A:1004863823166

    Article  ADS  Google Scholar 

  5. A. Fleischmann, C. Enss, G.M. Seidel, Cryogenic Particle Detection. (Springer, 2005), pp. 151–216. https://doi.org/10.1007/10933596_4

  6. I. Kim et al., Supercond. Sci. Technol. 30, 094005 (2017). https://doi.org/10.1088/1361-6668/aa7c73

    Article  ADS  Google Scholar 

  7. C.S. Kang et al., Supercond. Sci. Technol. 30, 084011 (2017). https://doi.org/10.1088/13616668/aa757a

    Article  ADS  Google Scholar 

  8. H.S. Jo et al., J. Low Temp. Phys. This Special Issue LTD17 (2018). https://doi.org/10.1007/s10909-018-1925-0

  9. G. Angloher et al., Eur. Phys. J. C 76, 25 (2016). https://doi.org/10.1140/epjc/s10052-016-3877-3

    Article  ADS  Google Scholar 

  10. E. Armengaud et al., J. Cosmol. Astropart. Phys. 2016, 019 (2016). https://doi.org/10.1088/1475-7516/2016/05/019

    Article  Google Scholar 

  11. R. Agnese et al., Phys. Rev. Lett. 116, 071301 (2016). https://doi.org/10.1103/PhysRevLett.116.071301

    Article  ADS  Google Scholar 

  12. D. Akimov et al., Science 357(6356), 1123–1126 (2016). https://doi.org/10.1126/science.aao0990

    Article  Google Scholar 

  13. H.J. Lee et al., Nucl. Instrum. Methods Phys. Res. A 784, 508–512 (2015). https://doi.org/10.1016/j.nima.2014.11.050

    Article  ADS  Google Scholar 

  14. G.B. Kim et al., IEEE Trans. Nucl. Sci. 63, 539–542 (2016). https://doi.org/10.1109/TNS.2015.2493529

    Article  ADS  Google Scholar 

  15. G.B. Kim et al., Adv. High Energy Phys. 2015, 817530 (2015). https://doi.org/10.1155/2015/817530

    Article  Google Scholar 

  16. D. McCammon, Cryogenic Particle Detection (Springer, Berlin, 2005), pp. 1–34. https://doi.org/10.1007/10933596_1

    Book  Google Scholar 

  17. Y.N. Yuryev et al., Nucl. Instrum. Meth. Phys. Res. A 635, 82–85 (2011). https://doi.org/10.1016/j.nima.2011.01.127

    Article  ADS  Google Scholar 

  18. S. Di Domizio, F. Orio, M. Vignati, J. Instrum. 6, P02007 (2011). https://doi.org/10.1088/1748-0221/6/02/P02007

    Article  Google Scholar 

  19. S. Butterworth, Wirel. Eng. 7(6), 536–541 (1930)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No. IBS-R016-G1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Jo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I., Choi, S.H., Jeon, J.A. et al. Trigger Study on the AMoRE-Pilot Detector. J Low Temp Phys 193, 1190–1198 (2018). https://doi.org/10.1007/s10909-018-1973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1973-5

Keywords

Navigation