Skip to main content
Log in

Fabrication of Antenna-Coupled KID Array for Cosmic Microwave Background Detection

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Kinetic inductance detectors (KIDs) have become an attractive alternative to traditional bolometers in the sub-mm and mm observing community due to their innate frequency multiplexing capabilities and simple lithographic processes. These advantages make KIDs a viable option for the O(500,000) detectors needed for the upcoming Cosmic Microwave Background-Stage 4 experiment. We have fabricated an antenna-coupled MKID array in the 150 GHz band optimized for CMB detection. Our design uses a twin-slot antenna coupled to an inverted microstrip made from a superconducting Nb/Al bilayer as the strip, a Nb ground plane and a SiN\(_x\) dielectric layer in between, which is then coupled to an Al KID grown on high-resistivity Si. We present the fabrication process and measurements of SiN\(_x\) microstrip resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Heidelberg MLA150: https://himt.de/index.php/maskless-write-lasers.html.

  2. PlasmaTherm ICP Fluorine Etcher: http://www.plasma-therm.com/apex_SLR.html.

  3. YES CV200 RFS Plasma Strip/Descum System: http://www.yieldengineering.com/products/plasma-strip-descum-systems/cv200rf-series.

  4. PlasmaTherm VERSALINE HDPCVD: http://www.plasma-therm.com/versaline.html.

  5. PlasmaTherm VERSALINE DSE: http://www.plasma-therm.com/versaline-dse.html.

References

  1. Planck Collaboration, Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830

    Article  Google Scholar 

  2. CMB-S4 Collaboration, arXiv:1610.02743 [astro-ph.CO] J. Baselmans, J. Low Temp. Phys. 167, 292 (2011). https://doi.org/10.1007/s10909-011-0448-8

    Article  ADS  Google Scholar 

  3. C.M. Posada et al., Supercond. Sci. Technol. 28(9), 094002 (2015). https://doi.org/10.1088/0953-2048/28/9/094002

    Article  ADS  Google Scholar 

  4. J. van der Kuur et al., IEEE Trans. Appl. Supercond. 25, 3 (2015). https://doi.org/10.1109/TASC.2015.2393716

    Article  Google Scholar 

  5. E. Shirokoff et al., Proc. SPIE 8452, 84520R (2012). https://doi.org/10.1117/12.927070

    Article  Google Scholar 

  6. M. Calvo, A. Benot, A. Catalano et al., J. Low Temp. Phys. 184, 816 (2016). https://doi.org/10.1007/s10909-016-1582-0

    Article  ADS  Google Scholar 

  7. L.J. Swenson et al., Proc. SPIE 8452, 84520P (2012). https://doi.org/10.1117/12.926223

    Article  Google Scholar 

  8. H. McCarrick et al., Proc. SPIE 9914, 99140O (2016). https://doi.org/10.1117/12.2231830

    Article  Google Scholar 

  9. B.R. Johnson et al., Proc. SPIE 9914, 99140X (2016). https://doi.org/10.1117/12.2233243

    Article  Google Scholar 

  10. P.S. Barry et al., J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1943-y

  11. A. Hornsby et al., J. Low Temp. Phys. (2018, submitted)

  12. E.E. Quealy, The POLARBEAR Cosmic Microwave Background Polarization Experiment and Anti-reflection Coatings for Millimeter Wave Observations (University of California, Berkeley, 2012)

    Google Scholar 

  13. D.F. Filipovic, S.S. Gearhartm, G.M. Rebeiz, I.E.E.E. Trans, Microw. Theory Tech. 41(10), 1738 (1993). https://doi.org/10.1109/22.247919

    Article  Google Scholar 

  14. K. Geerlings, S. Shankar, E. Edwards, L. Frunzio, R.J. Schoelkopf, M.H. Devoret, Appl. Phys. Lett. 100, 192601 (2012). https://doi.org/10.1063/1.4710520

    Article  ADS  Google Scholar 

  15. R. Basu Thakur, Q.Y. Tang, E. Shirokoff, F. Carter, R. McGeehan, IEEE Trans. Appl. Supercond. 27, 4 (2017). https://doi.org/10.1109/TASC.2016

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by NSF Award #1554565 and the Kavli NSF-PFC3 Detector Development Grant. This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through Grant NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. This work made use of the Pritzker Nanofabrication Facility of the Institute for Molecular Engineering at the University of Chicago, which receives support from SHyNE, a node of the National Science Foundations National Nanotechnology Coordinated Infrastructure (NSF NNCI-1542205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Y. Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q.Y., Barry, P.S., Basu Thakur, R. et al. Fabrication of Antenna-Coupled KID Array for Cosmic Microwave Background Detection. J Low Temp Phys 193, 149–156 (2018). https://doi.org/10.1007/s10909-018-1941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1941-0

Keywords

Navigation