Skip to main content
Log in

Stability of the Superconducting d-Wave Pairing Toward the Intersite Coulomb Repulsion in \(\hbox {CuO}_2\) Plane

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Taking into account the real crystalline structure of the \(\hbox {CuO}_2\) plane and the strong spin-fermion coupling, we study the influence of the intersite Coulomb repulsion between holes on the Cooper instability of the spin-polaron quasiparticles in cuprate superconductors. The analysis shows that only the superconducting d-wave pairing is implemented in the whole region of doping, whereas the solutions of the self-consistent equations for the s-wave pairing are absent. It is shown that intersite Coulomb interaction \(V_1\) between the holes located at the nearest oxygen ions does not affect the d-wave pairing, because its Fourier transform \(V_q\) vanishes in the kernel of the corresponding integral equation. The intersite Coulomb interaction \(V_2\) of quasiparticles located at the next-nearest oxygen ions does not vanish in the integral equations, however, but it is also shown that the d-wave pairing is robust toward this interaction for physically reasonable values of \(V_2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P.W. Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  2. N.F. Mott, Metal-Insulator Transitions (Taylor & Francis, London, New York, Philadelphia, 1990)

    Google Scholar 

  3. J.C. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  4. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  5. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)

    Article  ADS  Google Scholar 

  6. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  7. D.J. Scalapino, E. Loh Jr., J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

    Article  ADS  Google Scholar 

  8. D.J. Scalapino, E. Loh Jr., J.E. Hirsch, Phys. Rev. B 35, 6694 (1987)

    Article  ADS  Google Scholar 

  9. R.O. Zaitsev, V.A. Ivanov, Sov. Phys. Solid State 29, 1475 (1987)

    Google Scholar 

  10. H. Fukuyama, Y. Hasegawa, O. Narikiyo, J. Phys. Soc. Jpn. 60, 2013 (1991)

    Article  ADS  Google Scholar 

  11. M.A. Baranov, M.Y. Kagan, Z. Phys. B 86, 237 (1992)

    Article  ADS  Google Scholar 

  12. Y.A. Izyumov, Phys. Usp. 38, 385 (1995)

    Article  ADS  Google Scholar 

  13. D. Zanchi, H.J. Schulz, Phys. Rev. B 54, 9509 (1996)

    Article  ADS  Google Scholar 

  14. H. Tasaki, J. Phys.: Condens. Matter 68, 4353 (1998)

    ADS  Google Scholar 

  15. R. Hlubina, Phys. Rev. B 59, 9600 (1999)

    Article  ADS  Google Scholar 

  16. S. Raghu, S.A. Kivelson, D.J. Scalapino, Phys. Rev. B 81, 224505 (2010)

    Article  ADS  Google Scholar 

  17. A.S. Alexandrov, V.V. Kabanov, Phys. Rev. Lett. 106, 136403 (2011)

    Article  ADS  Google Scholar 

  18. S. Shubin, S. Vonsowsky, Proc. R. Soc. A 145, 159 (1934)

    Article  ADS  Google Scholar 

  19. M.Y. Kagan, D.V. Efremov, M.S. Marienko, V.V. Val’kov, JETP Lett. 93, 720 (2011)

    Article  ADS  Google Scholar 

  20. S. Raghu, E. Berg, A.V. Chubukov, S.A. Kivelson, Phys. Rev. B 85, 024516 (2012)

    Article  ADS  Google Scholar 

  21. M.Y. Kagan, V.V. Val’kov, V.A. Mitskan, M.M. Korovushkin, JETP Lett. 97, 226 (2013)

    Article  ADS  Google Scholar 

  22. M.Y. Kagan, V.V. Val’kov, V.A. Mitskan, M.M. Korovushkin, JETP 117, 728 (2013)

    Article  ADS  Google Scholar 

  23. V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)

    Article  ADS  Google Scholar 

  24. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)

    Article  ADS  Google Scholar 

  25. J.H. Jefferson, H. Eskes, L.F. Feiner, Phys. Rev. B 45, 7959 (1992)

    Article  ADS  Google Scholar 

  26. V.I. Belinicher, A.L. Chernyshev, Phys. Rev. B 47, 390 (1993)

    Article  ADS  Google Scholar 

  27. L.F. Feiner, J.H. Jefferson, R. Raimondi, Phys. Rev. B 53, 8751 (1996)

    Article  ADS  Google Scholar 

  28. V. Gavrichkov, A. Borisov, S.G. Ovchinnikov, Phys. Rev. B 64, 235124 (2001)

    Article  ADS  Google Scholar 

  29. D.J. Scalapino, Phys. Rep. 250, 329 (1995)

    Article  ADS  Google Scholar 

  30. Y.A. Izyumov, Phys. Usp. 40, 445 (1997)

    Article  ADS  Google Scholar 

  31. Y.A. Izyumov, Phys. Usp. 42, 215 (1999)

    Article  Google Scholar 

  32. T. Moriya, K. Ueda, Rep. Prog. Phys. 66, 1299 (2003)

    Article  ADS  Google Scholar 

  33. N.M. Plakida, High-Temperature Cuprate Superconductors (Springer, Berlin, 2010)

    Book  Google Scholar 

  34. R.O. Zaitsev, JETP 98, 780 (2004)

    Article  ADS  Google Scholar 

  35. V.V. Val’kov, M.M. Korovushkin, JETP 112, 108 (2011)

    Article  ADS  Google Scholar 

  36. V.Y. Yushankhai, G.M. Vujicic, R.B. Zakula, Phys. Lett. A 151, 254 (1990)

    Article  ADS  Google Scholar 

  37. V.V. Val’kov, T.A. Val’kova, D.M. Dzebisashvili, S.G. Ovchinnikov, JETP Lett. 75, 378 (2002)

    Article  ADS  Google Scholar 

  38. N.M. Plakida, V.S. Oudovenko, Eur. Phys. J. B 86, 115 (2013)

    Article  ADS  Google Scholar 

  39. N.M. Plakida, V.S. Oudovenko, JETP 146, 631 (2014)

    Google Scholar 

  40. E.I. Shneyder, S.G. Ovchinnikov, JETP 109, 1017 (2009)

    Article  ADS  Google Scholar 

  41. T. Misawa, M. Imada, Phys. Rev. B 90, 115137 (2014)

    Article  ADS  Google Scholar 

  42. N.M. Plakida, Phys. C 531, 39 (2016)

    Article  ADS  Google Scholar 

  43. V.A. Gavrichkov, S.G. Ovchinnikov, A.A. Borisov, E.G. Goryachev, JETP 91, 369 (2000)

    Article  ADS  Google Scholar 

  44. V.V. Val’kov, D.M. Dzebisashvili, A.F. Barabanov, Theor. Math. Phys. 191, 752 (2017)

    Article  Google Scholar 

  45. V.V. Val’kov, V.A. Mitskan, D.M. Dzebisashvili, A.F. Barabanov, Low Temp. Phys. 44, 173 (2018)

    Google Scholar 

  46. H. Matsukawa, H. Fukuyama, J. Phys. Soc. Jpn. 58, 2845 (1989)

    Article  ADS  Google Scholar 

  47. C.M. Varma, S. Schmitt-Rink, E. Abrahams, Solid State Commun. 62, 681 (1987)

    Article  ADS  Google Scholar 

  48. P. Monthoux, D. Pines, G.G. Lonzarich, Nature 450, 1177 (2007)

    Article  ADS  Google Scholar 

  49. H. Fröhlich, Phys. Rev. 79, 845 (1950)

    Article  ADS  Google Scholar 

  50. V.V. Tolmachev, Dokl. Akad. Nauk SSSR 140, 563 (1961). [in Russian]

    Google Scholar 

  51. V.V. Val’kov, D.M. Dzebisashvili, M.M. Korovushkin, A.F. Barabanov, JETP Lett. 103, 385 (2016)

    Article  ADS  Google Scholar 

  52. A.F. Barabanov, L.A. Maksimov, G.V. Uimin, JETP Lett. 47, 622 (1988)

    ADS  Google Scholar 

  53. A.F. Barabanov, L.A. Maksimov, G.V. Uimin, Sov. Phys. JETP 69, 371 (1989)

    Google Scholar 

  54. P. Prelovšek, Phys. Lett. A. 126, 287 (1988)

    Article  ADS  Google Scholar 

  55. J. Zaanen, A.M. Oleś, Phys. Rev. B. 37, 9423 (1988)

    Article  ADS  Google Scholar 

  56. E.B. Stechel, D.R. Jennison, Phys. Rev. B. 38, 4632 (1988)

    Article  ADS  Google Scholar 

  57. V.J. Emery, G. Reiter, Phys. Rev. B. 38, 4547 (1988)

    Article  ADS  Google Scholar 

  58. M.S. Hybertsen, M. Schluter, N.E. Christensen, Phys. Rev. B 39, 9028 (1989)

    Article  ADS  Google Scholar 

  59. M. Ogata, H. Fukuyama, Rep. Prog. Phys. 71, 036501 (2008)

    Article  ADS  Google Scholar 

  60. D.M. Dzebisashvili, V.V. Val’kov, A.F. Barabanov, JETP Lett. 98, 528 (2013)

    Article  ADS  Google Scholar 

  61. M.H. Fischer, E.-A. Kim, Phys. Rev. B 84, 144502 (2011)

    Article  ADS  Google Scholar 

  62. R. Zwanzig, Phys. Rev. 124, 983 (1961)

    Article  ADS  Google Scholar 

  63. H. Mori, Prog. Theor. Phys. 33, 423 (1965)

    Article  ADS  Google Scholar 

  64. A.F. Barabanov, A.A. Kovalev, O.V. Urazaev, A.M. Belemuk, R. Hayn, JETP 92, 677 (2001)

    Article  ADS  Google Scholar 

  65. V.V. Val’kov, D.M. Dzebisashvili, A.F. Barabanov, JETP 118, 959 (2014)

    Article  ADS  Google Scholar 

  66. V.V. Val’kov, D.M. Dzebisashvili, A.F. Barabanov, Phys. Lett. A 379, 421 (2015)

    Article  Google Scholar 

  67. D.N. Zubarev, Sov. Phys. Usp. 3, 320 (1960)

    Article  ADS  Google Scholar 

  68. V.V. Val’kov, D.M. Dzebisashvili, A.F. Barabanov, J. Low Temp. Phys. 181, 134 (2015)

    Article  ADS  Google Scholar 

  69. V.V. Val’kov, D.M. Dzebisashvili, A.F. Barabanov, J. Supercond. Nov. Magn. 29, 1049 (2016)

    Article  Google Scholar 

  70. M.Y. Kagan, V.A. Mitskan, M.M. Korovushkin, Phys. Usp. 58, 733 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the program of the Presidium of the Russian Academy of Sciences No. 12 “Fundamental problems of high-temperature superconductivity”, the Russian Foundation for Basic Research (RFBR) and partly by the Government of Krasnoyarsk Region and the Krasnoyarsk Region Science and Technology Support Fund (Projects Nos. 16-42-243057 and 16-42-240435). The work of A. F. B. was funded by RFBR (Project No. 16-02-00304). The work of M. M. K. was supported by a grant of the President of the Russian Federation (Project MK-1398.2017.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Korovushkin.

Appendix

Appendix

The functions \(S_{ij}^{(l)}(k,{{\omega }})\) in anomalous Green’s functions \(F_{ij}(k,{{\omega }})\) have the form

$$\begin{aligned} S^{(1)}_{11}(k,{{\omega }})= & {} Q_{3y}(k,-{{\omega }})Q_{3y}(k,{{\omega }}),\nonumber \\ S^{(2)}_{11}(k,{{\omega }})= & {} S^{(1)}_{21}(k,{{\omega }})= Q_{3}(k,-{{\omega }})Q_{3y}(k,{{\omega }}),\nonumber \\ S^{(3)}_{11}(k,{{\omega }})= & {} S^{(1)}_{12}(k,{{\omega }})= S^{(2)}_{11}(k,-{{\omega }}),\nonumber \\ S^{(4)}_{11}(k,{{\omega }})= & {} S^{(2)}_{12}(k,{{\omega }})=S^{(3)}_{21}(k,{{\omega }})= S^{(1)}_{22}(k,{{\omega }})=Q_{3}(k,-{{\omega }})Q_{3}(k,{{\omega }}),\nonumber \\ S^{(5)}_{11}(k,{{\omega }})= & {} -Q_{y}(k,-{{\omega }})Q_{y}(k,{{\omega }}),\nonumber \\ S^{(3)}_{12}(k,{{\omega }})= & {} Q_{3y}(k,-{{\omega }})Q_{3x}(k,{{\omega }}),\nonumber \\ S^{(2)}_{21}(k,{{\omega }})= & {} S^{(3)}_{12}(k,-{{\omega }}),\nonumber \\ S^{(4)}_{12}(k,{{\omega }})= & {} S^{(3)}_{22}(k,{{\omega }})= Q_{3}(k,-{{\omega }})Q_{3x}(k,{{\omega }}),\nonumber \\ S^{(4)}_{21}(k,{{\omega }})= & {} S^{(2)}_{22}(k,{{\omega }})=S^{(4)}_{12}(k,-{{\omega }}),\nonumber \\ S^{(5)}_{12}(k,{{\omega }})= & {} -Q_{y}(k,-{{\omega }})Q_{x}(k,{{\omega }}),\nonumber \\ S^{(5)}_{21}(k,{{\omega }})= & {} S^{(5)}_{12}(k,-{{\omega }}),\nonumber \\ S^{(4)}_{22}(k,{{\omega }})= & {} Q_{3x}(k,-{{\omega }})Q_{3x}(k,{{\omega }}),\nonumber \\ S^{(5)}_{22}(k,{{\omega }})= & {} -Q_{x}(k,-{{\omega }})Q_{x}(k,{{\omega }}),\nonumber \\ S^{(1)}_{31}(k,{{\omega }})= & {} -K_kQ_{y}(k,-{{\omega }})Q_{3y}(k,{{\omega }}),\nonumber \\ S^{(2)}_{31}(k,{{\omega }})= & {} -K_kQ_{x}(k,-{{\omega }})Q_{3y}(k,{{\omega }}),\nonumber \\ S^{(3)}_{31}(k,{{\omega }})= & {} S^{(1)}_{32}(k,{{\omega }})=-K_kQ_{y}(k,-{{\omega }})Q_{3}(k,{{\omega }}),\nonumber \\ S^{(4)}_{31}(k,{{\omega }})= & {} S^{(2)}_{32}(k,{{\omega }})=-K_kQ_{x}(k,-{{\omega }})Q_{3}(k,{{\omega }}),\nonumber \\ S^{(5)}_{31}(k,{{\omega }})= & {} Q_{xy}(k,-{{\omega }})Q_{y}(k,{{\omega }}),\nonumber \\ S^{(3)}_{32}(k,{{\omega }})= & {} -K_kQ_{y}(k,-{{\omega }})Q_{3x}(k,{{\omega }}),\nonumber \\ S^{(4)}_{32}(k,{{\omega }})= & {} -K_kQ_{x}(k,-{{\omega }})Q_{3x}(k,{{\omega }}),\nonumber \\ S^{(5)}_{32}(k,{{\omega }})= & {} Q_{xy}(k,-{{\omega }})Q_{x}(k,{{\omega }}),\nonumber \\ S^{(1)}_{33}(k,{{\omega }})= & {} -K_k^2S^{(5)}_{11}(k,{{\omega }}),\nonumber \\ S^{(2)}_{33}(k,{{\omega }})= & {} K_k^2S^{(5)}_{12}(k,-{{\omega }}),\nonumber \\ S^{(3)}_{33}(k,{{\omega }})= & {} S^{(2)}_{33}(k,-{{\omega }}),\nonumber \\ S^{(4)}_{33}(k,{{\omega }})= & {} K_k^2S^{(5)}_{22}(k,{{\omega }}),\nonumber \\ S^{(5)}_{33}(k,{{\omega }})= & {} Q_{xy}(k,-{{\omega }})Q_{xy}(k,{{\omega }}). \end{aligned}$$
(26)

where

$$\begin{aligned} Q_{x(y)}(k,{{\omega }})= & {} ({{\omega }}-\xi _{x(y)})J_{y(x)}+t_kJ_{x(y)},\qquad ~~ Q_{xy}(k,{{\omega }})=({{\omega }}-\xi _x)({{\omega }}-\xi _y)-t_k^2,\\ Q_{3x(3y)}(k,{{\omega }})= & {} ({{\omega }}-\xi _L)({{\omega }}-\xi _{x(y)})-J_{x(y)}^2K_k,~~~ Q_3(k,{{\omega }})=({{\omega }}-\xi _L)t_k+J_xJ_yK_k. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Val’kov, V.V., Dzebisashvili, D.M., Korovushkin, M.M. et al. Stability of the Superconducting d-Wave Pairing Toward the Intersite Coulomb Repulsion in \(\hbox {CuO}_2\) Plane. J Low Temp Phys 191, 408–425 (2018). https://doi.org/10.1007/s10909-018-1882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1882-7

Keywords

Navigation