Skip to main content
Log in

Morphological Simulation of Phase Separation Coupled Oscillation Shear and Varying Temperature Fields

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This paper explores the effect of the shear frequency and Prandtl number (Pr) on the procedure and pattern formation of phase separation in symmetric and asymmetric systems. For the symmetric system, the periodic shear significantly prolongs the spinodal decomposition stage and enlarges the separated domain in domain growth stage. By adjusting the Pr and shear frequency, the number and orientation of separated steady layer structures can be controlled during domain stretch stage. The numerical results indicate that the increase in Pr and decrease in the shear frequency can significantly increase in the layer number of the lamellar structure, which relates to the decrease in domain size. Furthermore, the lamellar orientation parallel to the shear direction is altered into that perpendicular to the shear direction by further increasing the shear frequency, and also similar results for larger systems. For asymmetric system, the quantitative analysis shows that the decrease in the shear frequency enlarges the size of separated minority phases. These numerical results provide guidance for setting the optimum condition for the phase separation under periodic shear and slow cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Brennen, Fundamentals of Multiphase Flow (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  2. K. Koppi, M. Tirrel, F. Bates, K. Almdal, R. Colby, J. Phys. II 2, 1941 (1992)

    Google Scholar 

  3. Y. Zhang, U. Wiesner, J. Chem. Phys. 3, 4784 (1995)

    Article  ADS  Google Scholar 

  4. Y. Zhang, U. Wiesner, Y. Yang, T. Pakula, W. Spiess, Macromolecules 29, 5427 (1996)

    Article  ADS  Google Scholar 

  5. H. Zhang, Y. Yang, Sci. China Ser. B 40, 53 (1997)

    Article  Google Scholar 

  6. E.K. Hobbie, S. Kim, C.C. Han, Phys. Rev. E 54, R5909 (1996)

    Article  ADS  Google Scholar 

  7. J. Escalante, M. Gradzielski, H. Hoffmann, K. Mortensen, Langmuir 16, 8653 (2000)

    Article  Google Scholar 

  8. A. Pommella, S. Caserta, S. Guido, Soft Matter 9, 7545 (2013)

    Article  ADS  Google Scholar 

  9. O. Glatter, I. Glatter, US. EP2604253 (2013)

  10. T. Kato, K. Minewaki, K. Miyazaki, Y. Kawabata, T. Shikata, S. Komura, M. Fujii, Progr Colloid Polym Sci 129, 9 (2004)

    Google Scholar 

  11. U. Wiesner, Macromol. Chem. Phys. 198, 3319 (1997)

    Article  Google Scholar 

  12. N. Balsara, B. Hammouda, P. Kesani, S. Jonnalagadda, G. Straty, Macromolecules 27, 2566 (1994)

    Article  ADS  Google Scholar 

  13. N. Balsara, B. Hammouda, Phys. Rev. Lett. 72, 360 (1994)

    Article  ADS  Google Scholar 

  14. V. Starikovicius, B. Fraunhofer, ITWM 55, 1 (2003)

  15. A. Jacot, M. Rappaz, R.C. Reed, Acta Mater. 46, 3949 (1998)

    Article  Google Scholar 

  16. A.P. Krekhov, L. Kramer, Phys. Rev. E 70, 264 (2004)

    Article  Google Scholar 

  17. E. Orlandini, M.R. Swift, J.M. Yeomans, Europhys. Lett. 32, 463 (1995)

    Article  ADS  Google Scholar 

  18. M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5041 (1996)

    Article  ADS  Google Scholar 

  19. M.E. Cates, J. Vollmer, A. Wagner, Philos. Trans. 361, 793 (2003)

    Article  ADS  Google Scholar 

  20. H. Liu, Y. Zhang, A.J. Valocchi, J. Comput. Phys. 231, 4433 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Liu, A.J. Valocchi, Y. Zhang, Q. Kang, J. Comput. Phys. 256, 334 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. A.J. Wagner, J.M. Yeomans, Phys. Rev. E 59, 4366 (1999)

    Article  ADS  Google Scholar 

  23. J. Cahn, J. Hilliard, J. Chem. Phys. 28, 258 (1958)

    Article  ADS  Google Scholar 

  24. J. Rowlinson, B. Widom, Molecular Theory of Capillarity Clarendon (Clarendon Press, Oxford, 1982)

  25. S. Puri, V. Wadhawan, Kinetics of Phase Transitions (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  26. L.E. Reichl, A Modern Course in Statistical Physics (Arnold, London, 1980)

    MATH  Google Scholar 

  27. Z. Guo, B. Shi, C. Zheng, Int. J. Numer. Methods Fluids 39, 325 (2002)

    Article  ADS  Google Scholar 

  28. A. Lammura, G. Gonnella, Physica A 294, 295 (2000)

    Article  ADS  Google Scholar 

  29. A. Xu, G. Gonnella, A. Lamura, Phys. Rev. E 67, 056105 (2003)

    Article  ADS  Google Scholar 

  30. X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87, 115 (1997)

    Article  ADS  Google Scholar 

  31. C.F. Ho, C. Chang, K.H. Lin, C.A. Lin, CMES Comput. Modeling Eng. Sci. 44, 137 (2009)

    MathSciNet  Google Scholar 

  32. H. Wang, X. Geng, X. Li, D. Zang, Eur. Phys. J. E 39, 102 (2016)

    Article  ADS  Google Scholar 

  33. K. Koppi, M. Tirrell, F. Bates, Phys. Rev. Lett. 70, 1449 (1993)

    Article  ADS  Google Scholar 

  34. K. Jackson, J. Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966)

    Google Scholar 

  35. N. Wang, Y.E. Kalay, R. Trivedi, Acta Mater. 59, 6604 (2011)

    Article  Google Scholar 

  36. R. Trivedi, N. Wang, Acta Mater. 60, 3140 (2012)

    Article  Google Scholar 

  37. R. Trivedi, P. Magnin, W. Kurz, Acta Metall. 35, 971 (1987)

    Article  Google Scholar 

  38. K. Matsuzaka, H. Jinnai, T. Koga, T. Hashimoto, Macromolecules 30, 1146 (1997)

    Article  ADS  Google Scholar 

  39. F. Qiu, H. Zhang, Y. Yang, J. Chem. Phys. 109, 1575 (1998)

    Article  ADS  Google Scholar 

  40. T. Ohta, H. Nozaki, M. Doi, J. Chem. Phys. 93, 2664 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Nature Science Foundation of China (Grant Nos. 51301139, 11404243, 10872172 and 51672224), the Shaanxi Provincial Natural Science Foundation (Grant No. 2016JM1003), the Fundamental Research Funds for the Central Universities (Grant No. 3102016ZY026), Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 15JK1313) and the Start-up Funding of Northwestern Polytechnical University (Grant No. G2016KY0306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, X., Lin, K. et al. Morphological Simulation of Phase Separation Coupled Oscillation Shear and Varying Temperature Fields. J Low Temp Phys 191, 153–173 (2018). https://doi.org/10.1007/s10909-018-1850-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1850-2

Keywords

Navigation