Skip to main content
Log in

Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Murakami, Processing and applications of bulk RE–Ba–Cu–O superconductors. Int. J. Appl. Ceram. Technol. 4(3), 225–241 (2007)

    Article  Google Scholar 

  2. F.N. Werfel et al., Superconductor bearings, flywheels and transportation. Supercond. Sci. Technol. 25(1), 014007 (2012)

    Article  ADS  Google Scholar 

  3. J.S. Wang et al., The first man-loading high temperature superconducting maglev test vehicle in the world. Phys. C 378–381, 809–814 (2002)

    Article  Google Scholar 

  4. J.R. Hull, Superconducting bearings. Supercond. Sci. Technol. 13(2), R1–R15 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Z. Deng et al., A high-temperature superconducting maglev ring test line developed in Chengdu, china. IEEE Trans. Appl. Supercond. 26(6), 3602408 (2016)

    Article  Google Scholar 

  6. K.L. Kovalev, et al., Magnetically levitated high-speed carriages on the basis of bulk HTS elements, in Proceedings of the 8th International Symposium Magnetic Suspension Technology (2005), p. 51

  7. L. Schultz et al., Superconductively levitated transport system—the SupraTrans project. IEEE Trans. Appl. Supercond. 15(2), 2301–2305 (2005)

    Article  Google Scholar 

  8. G.G. Sotelo et al., A full scale superconducting magnetic levitation (MagLev) vehicle operational line. IEEE Trans. Appl. Supercond. 25(3), 3601005 (2015)

    Article  Google Scholar 

  9. K. Ozturk, A. Patel, B.A. Glowacki, A numerical study to investigate magnetization, current density and trapped field properties of doped-Sm123 bulk superconductor under different magnetic field. Phys. Status Solid A 209(12), 2558–2564 (2012)

    Article  ADS  Google Scholar 

  10. C.G. Huang et al., Levitation properties of maglev systems using soft ferromagnets. Supercond. Sci. Technol. 28(3), 035005 (2015)

    Article  ADS  Google Scholar 

  11. M. Zhang, T.A. Coombs, 3D modeling of high-Tc superconductors by finite element software. Supercond. Sci. Technol. 25(1), 015009 (2012)

    Article  ADS  Google Scholar 

  12. M.D. Ainslie, H. Fujishiro, Modelling of bulk superconductor magnetization. Supercond. Sci. Technol. 28(5), 053002 (2015)

    Article  ADS  Google Scholar 

  13. H. Ueda, A. Ishiyama, Dynamic characteristics and finite element analysis of a magnetic levitation system using a YBCO bulk superconductor. Supercond. Sci. Technol. 17(5), S170–S175 (2004)

    Article  ADS  Google Scholar 

  14. C. Navau, N. Del-Valle, A. Sanchez, Macroscopic modeling of magnetization and levitation of hard type-II superconductors: the critical state model. IEEE Trans. Appl. Supercond. 23(1), 8201023 (2013)

    Article  Google Scholar 

  15. L. Quéval et al., Optimization of the superconducting linear magnetic bearing of a maglev vehicle. IEEE Trans. Appl. Supercond. 26(3), 3601905 (2016)

    Article  Google Scholar 

  16. J. Peña-Roche, A. Badía-Majós, Modelling toolkit for simulation of maglev devices. Supercond. Sci. Technol. 30(1), 014012 (2016)

    Article  ADS  Google Scholar 

  17. F. Sass et al., H-formulation for simulating levitation forces acting on HTS bulks and stacks of 2G coated conductors. Supercond. Sci. Technol. 28(12), 125012 (2015)

    Article  ADS  Google Scholar 

  18. G.T. Ma et al., Numerical simulations of the mutual effect among the superconducting constituents in a levitation system with translational symmetry. J. Appl. Phys. 115, 083908 (2014)

    Article  ADS  Google Scholar 

  19. G.G. Sotelo et al., Experimental and theoretical levitation forces in a superconducting bearing for a real-scale maglev system. IEEE Trans. Appl. Supercond. 21(5), 3532–3540 (2011)

    Article  ADS  Google Scholar 

  20. K. Ozturk et al., The effect of magnetic field distribution and pole array on the vertical levitation force properties of HTS maglev systems. IEEE Trans. Appl. Supercond. 25(4), 3601607 (2015)

    Article  Google Scholar 

  21. M. Abdioglu et al., Levitation and guidance force efficiencies of bulk YBCO for different permanent magnetic guideways. J. Alloys Compd. 630, 260–265 (2015)

    Article  Google Scholar 

  22. K. Ozturk et al., Comparative study of the magnetic stiffness, levitation and guidance force properties of single and multi seeded YBCOs for different HTS–PMG arrangements. J. Alloys Compd. 643, 201–206 (2015)

    Article  Google Scholar 

  23. J. Zheng et al., Magnetic and levitation characteristics of bulk high-temperature superconducting magnets above a permanent magnet guideway. Supercond. Sci. Technol. 29(9), 095009 (2016)

    Article  ADS  Google Scholar 

  24. D. He et al., Spatial and temporal flux-trapping properties of bulk high temperature superconductors under static magnetization fields. J. Supercond. Nov. Magn. 28(8), 2385–2391 (2015)

    Article  Google Scholar 

  25. T. Oka et al., Selective magnetic field invasion into HTS bulk magnets in pulse field magnetizing processes. IEEE Trans. Appl. Supercond. 26(3), 6800504 (2016)

    Article  Google Scholar 

  26. E.S. Motta et al., Optimization of a linear superconducting levitation system. IEEE Trans. Appl. Supercond. 21(5), 3548–3554 (2011)

    Article  ADS  Google Scholar 

  27. C.Q. Ye et al., Observation of the field, current and force distributions in an optimized superconducting levitation with translational symmetry. J. Low Temp. Phys. 186(1), 106–120 (2017)

    Article  ADS  Google Scholar 

  28. T. Oka et al., Preferential magnetic flux invasion and heat generation owing to macrostructure in HTS bulk magnets in pulse field magnetization processes. IEEE Trans. Appl. Supercond. 25(3), 6800904 (2015)

    Article  Google Scholar 

  29. R. Zeng et al., An improved high-superconducting maglev measurement system with multi-parameter test and movement functions. IEEE Trans. Appl. Supercond. 23(3), 9000904 (2013)

    Article  Google Scholar 

  30. D.H.N. Dias et al., Experimental validation of field cooling simulations for linear superconducting magnetic bearings. Supercond. Sci. Technol. 23(7), 075013 (2010)

    Article  ADS  Google Scholar 

  31. C.P. Bean, Magnetization of high-field superconductors. Rev. Mod. Phys. 36(1), 886–901 (1964)

    Article  Google Scholar 

  32. E.H. Brant, Electromagnetic response of type-II superconductors: effects of specimen shape, field orientation, and London depth. Phys. C 369(1–4), 187–192 (2002)

    Article  ADS  Google Scholar 

  33. F.C. Moon, P.Z. Chang, Superconducting Levitation: Applications to Bearings and Magnetic Transportation (Wiley, New York, 1994)

    Google Scholar 

  34. P.W. Anderson, Theory of flux creep in hard superconductors. Phys. Rev. Lett. 9(7), 309–311 (1962)

    Article  ADS  Google Scholar 

  35. P.W. Anderson, Y.B. Kim, Hard superconductivity: theory of the motion of Abrikosov flux lines. Rev. Mod. Phys. 36(1), 39–42 (1964)

    Article  ADS  Google Scholar 

  36. A.B. Riise et al., Logarithmic relaxation in the levitation force in a magnetc-high Tc superconductor system. Appl. Phys. Lett. 60(18), 2294–2296 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (51375404), the Sichuan Youth Science and Technology Fund (2016JQ0039), the Fundamental Research Funds for the Central Universities (2682017ZT05 and 2682017ZDPY05) and the State Key Laboratory of Traction Power at Southwest Jiaotong University (2015TPL_Z02 and 2016TPL_T01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zigang Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Zheng, J., Zheng, B. et al. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway. J Low Temp Phys 189, 42–52 (2017). https://doi.org/10.1007/s10909-017-1788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1788-9

Keywords

Navigation