Skip to main content
Log in

The Frequency Dependence of the Added Mass of Quartz Tuning Fork Immersed in He II

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We measured the dependences of the resonance frequency of tuning forks immersed in liquid helium at \(T = 0.365\hbox { K}\) in the pressure interval from saturated vapor pressure to 24.8 atm. The quartz tuning forks have been studied with different resonance frequencies of 6.65, 8.46, 12.1, 25.0 and 33.6 kHz in vacuum. The measurements were taken in the laminar flow regime. The experimental data allow us to determine the added mass of a quartz tuning fork in He II. It was found that the added mass per unit length of the prong fork is frequency dependent. Some possible qualitative explanations for such dependence are proposed. In addition, we observed, at \(T = 0.365\hbox { K}\), the changes in added mass with pressure according to the pressure dependence of He II density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D.O. Clubb, O.V.L. Buu, R.M. Bowley, R. Nyman, J.R. Owers-Bradley, J. Low Temp. Phys. 136, 1 (2004). doi:10.1023/B:JOLT.0000035368.63197.16

    Article  ADS  Google Scholar 

  2. R. Blaauwgeers, M. Blažková, M. Človečko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007). doi:10.1007/s10909-006-9279-4

    Article  ADS  Google Scholar 

  3. A.P. Sebedash, J.T. Tuoriniemi, E.M.M. Pentti, A.J. Salmela, J. Low Temp. Phys. 150, 181 (2008). doi:10.1007/s10909-007-9535-2

    Article  ADS  Google Scholar 

  4. E.M. Pentti, J.T. Tuoriniemi, A.J. Salmela, A.P. Sebedash, J. Low Temp. Phys. 150, 555 (2008). doi:10.1007/s10909-007-9583-7

    Article  ADS  Google Scholar 

  5. D.I. Bradley, M. Človĕcko, E. Gažo, P. Skyba, J. Low Temp. Phys. 152, 147 (2008). doi:10.1007/s10909-008-9815-5

    Article  ADS  Google Scholar 

  6. G.A. Sheshin, A.A. Zadorozhko, E.Ya. Rudavskii, V.K. Chagovets, L. Skrbek, M. Blazhkova, Low Temp. Phys. 34, 875 (2008)

    Article  ADS  Google Scholar 

  7. D.I. Bradley, M.J. Fear, S.N. Fisher, A.M. Guenault, R.P. Haley, C.R. Lawson, P.V.E. McClintock, G.R. Pickett, R. Schanen, V. Tsepelin, L.A. Wheatland, J. Low Temp. Phys. 156, 116 (2009). doi:10.1007/s10909-009-9901-3

    Article  ADS  Google Scholar 

  8. Marcel Človĕcko, Emil Gažo, Martin Kupka, Maroš Skyba, Peter Skyba, J. Low Temp. Phys. 162, 669 (2011). doi:10.1007/s10909-010-0330-0

    Article  ADS  Google Scholar 

  9. I.A. Gritsenko, A.A. Zadorozhko, A.S. Neoneta, V.K. Chagovets, G.A. Sheshin, Low Temp. Phys. 37, 551 (2011). doi:10.1063/1.3626842

    Article  ADS  Google Scholar 

  10. I.A. Gritsenko, K.A. Klokol, S.S. Sokolov, G.A. Sheshin, Low Temp. Phys. 42, 21 (2016). doi:10.1063/1.4940343

    Article  ADS  Google Scholar 

  11. D. Schmoranzer, M. La Mantia, G. Sheshin, I. Gritsenko, A. Zadorozhko, M. Rotter, L. Skrbek, J. Low Temp. Phys. 163, 317 (2011). doi:10.1007/s10909-011-0353-1

    Article  ADS  Google Scholar 

  12. D.I. Bradley, M. Ćlovećko, S.N. Fisher, D. Garg, E. Guise, R.P. Haley, O. Kolosov, G.R. Pickett, V.T. Sepelin, Phys. Rev. B 85, 014501 (2012). doi:10.1103/PhysRevB.85.014501

    Article  ADS  Google Scholar 

  13. I. Gritsenko, A. Zadorozhko, G. Sheshin, J. Low Temp. Phys. 171, 194 (2013). doi:10.1007/s10909-012-0771-8

    Article  ADS  Google Scholar 

  14. I.A. Gritsenko, K.A. Klokol, S.S. Sokolov, G.A. Sheshin, Low Temp. Phys. to be publish

  15. J.W. Daily, D.R.F. Harleman, “Fluid Dynamics”, Moscow “Energy”, (1971)

  16. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998). doi:10.1063/1.556028

    Article  ADS  Google Scholar 

  17. W.-H. Chu, Technical Report No. 2, DTMB, Contract NObs-86396(X), Southwest Research Institute, San Antonio, Texas (1963)

  18. J. Rysti, J. Tuoriniemi, J. Low Temp. Phys. 177(3–4), 133–150 (2014). doi:10.1007/s10909-014-1203-8

    Article  ADS  Google Scholar 

  19. The rules on the calculation of the strength of the equipment and pipelines of nuclear power plants (IHAY G-7-002-86), Gosatomenergonadzor USSR, Moscow, “Energoatomizdat”, (1989)

  20. V.L. Gurevich, B.D. Laikhtman, JETP 42(4), 628 (1975)

    ADS  Google Scholar 

  21. Yu A. Kosevich, Sov. J. Low Temp. Phys. 9(5), 242 (1983)

    Google Scholar 

Download references

Acknowledgements

The authors thank K. Nemchenko and I. Adamenko for helpful discussions. We are also grateful to the group of ultralow temperatures from the University of Lancaster (UK) for donation of the quartz tuning forks. The research was partially supported by Research Youth Project of NAS of Ukraine (No. 5/H-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sheshin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsenko, I., Klokol, K., Sokolov, S. et al. The Frequency Dependence of the Added Mass of Quartz Tuning Fork Immersed in He II. J Low Temp Phys 187, 433–438 (2017). https://doi.org/10.1007/s10909-016-1697-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1697-3

Keywords

Navigation