Skip to main content
Log in

The Helium Field Effect Transistor (II): Gated Transport of Surface-State Electrons Through Micro-constrictions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present transport measurements of surface-state electrons on liquid helium films in confined geometry. The measurements are taken using split-gate devices similar to a field effect transistor. The number of electrons passing between the source and drain areas of the device can be precisely controlled by changing the length of the voltage pulse applied to the gate electrode. We find evidence that the effective driving potential depends on electron–electron interactions, as well as the electric field applied to the substrate. Our measurements indicate that the mobility of electrons on helium films can be high and that microfabricated transistor devices allow electron manipulation on length scales close to the interelectron separation. Our experiment is an important step toward investigations of surface-state electron properties at much higher densities, for which the quantum melting of the system to a degenerate Fermi gas should be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Andrei, Two-Dimensional Electron Systems on Helium and Other Cryogenic Substrates (Kluwer Academic, Dordrecht, 1997)

    Book  Google Scholar 

  2. C.C. Grimes, G. Adams, Phys. Rev. Lett. 36, 145 (1976)

    Article  ADS  Google Scholar 

  3. K. Shirahama, S. Ito, H. Suto, K. Kono, J. Low Temp. Phys. 101, 433 (1995)

    Article  ADS  Google Scholar 

  4. P. Leiderer, E. Scheer, K. Kono, J.-J. Lin, D.G. Rees, J. Low Temp. Phys. (2015). doi:10.1007/s10909-015-1377-8

    Google Scholar 

  5. P.M. Platzman, M.I. Dykman, Science 284, 5422 (1999)

    Article  Google Scholar 

  6. D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Phys. Rev. Lett. 105, 40503 (2010)

    Article  ADS  Google Scholar 

  7. D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Höfer, P. Leiderer, K. Kono, Phys. Rev. Lett. 106, 026803 (2011)

    Article  ADS  Google Scholar 

  8. H. Ikegami, H. Akimoto, D.G. Rees, K. Kono, Phys. Rev. Lett. 109, 236802 (2012)

    Article  ADS  Google Scholar 

  9. M. Takita, C.S. Nichols, S. Lyon, Bull. Am. Phys. Soc. 60(1), (2015). http://meetings.aps.org/link/BAPS.2015.MAR.Q37.11

  10. P. Glasson, V. Dotsenko, P. Fozooni, M.J. Lea, W. Bailey, G. Papageorgiou, S.E. Andresen, A. Kristensen, Phys. Rev. Lett. 87, 176802 (2001)

    Article  ADS  Google Scholar 

  11. H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. Lett. 102, 046807 (2009)

    Article  ADS  Google Scholar 

  12. J. Klier, I. Doicescu, P. Leiderer, J. Low Temp. Phys. 121, 603 (2000)

    Article  ADS  Google Scholar 

  13. M. Ashari, D.G. Rees, K. Kono, E. Scheer, P. Leiderer, J. Low Temp. Phys. 167, 15 (2012)

    Article  ADS  Google Scholar 

  14. F. Shaban, T. Lorenz, R. Rau, M. Ashari, D. Rees, K. Kono, E. Scheer, P. Leiderer, J. Phys. Conf. Ser. 568, 012008 (2014)

    Article  ADS  Google Scholar 

  15. V. Shikin, J. Klier, I. Doicescu, A. Würl, P. Leiderer, Phys. Rev. B 64, 073401 (2001)

    Article  ADS  Google Scholar 

  16. X.L. Hu, Y. Carmi, A.J. Dahm, J. Low Temp. Phys. 89, 625 (1992)

    Article  ADS  Google Scholar 

  17. E.Y. Andrei, Phys. Rev. Lett. 52, 1449 (1984)

    Article  ADS  Google Scholar 

  18. H.W. Jiang, M.A. Stan, A.J. Dahm, Surf. Sci. 196, 1 (1988)

    Article  ADS  Google Scholar 

  19. C. Kreuter, U. Siems, P. Henseler, P. Nielaba, P. Leiderer, A. Erbe, J. Phys. Condens. Matter 24, 464120 (2012)

    Article  ADS  Google Scholar 

  20. G. Mistura, T. Günzler, S. Neser, P. Leiderer, Phys. Rev. B 56, 8360 (1997)

    Article  ADS  Google Scholar 

  21. M. Köppl, P. Henseler, A. Erbe, P. Nielaba, P. Leiderer, Phys. Rev. Lett. 97, 208302 (2006)

    Article  ADS  Google Scholar 

  22. U. Siems, C. Kreuter, A. Erbe, N. Schwierz, S. Sengupty, P. Leiderer, P. Nielaba, Sci. Rep. 2, 1015 (2013)

    Google Scholar 

  23. G. Piacente, I.V. Schweigert, J.J. Betouras, F.M. Peeters, Phys. Rev. B 69, 045324 (2004)

    Article  ADS  Google Scholar 

  24. T. Günzler, B. Bitnar, G. Mistura, S. Neser, P. Leiderer, Surf. Sci. 361/362, 831 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

It is a pleasure to dedicate this work to Horst Meyer on the occasion of his 90th birthday. One of us (P.L.) has the privilege of knowing Horst for more than four decades and has profited tremendously from many illuminating discussions on various aspects of quantum fluids and solids. We thank V. B. Shikin for useful correspondence and Louis Kukk for technical help. M. A. gratefully acknowledges the support by DAAD, and F. S. a scholarship by the University of Khartoum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Leiderer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaban, F., Ashari, M., Lorenz, T. et al. The Helium Field Effect Transistor (II): Gated Transport of Surface-State Electrons Through Micro-constrictions. J Low Temp Phys 185, 339–353 (2016). https://doi.org/10.1007/s10909-016-1641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1641-6

Keywords

Navigation