Skip to main content
Log in

Phonon Spectrum in Hydroxyapatite: Calculations and EPR Study at Low Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Density functional theory-based calculations within the framework of the plane-wave pseudopotential approach are carried out to define the phonon spectrum of hydroxyapatite \(\mathrm{Ca}_{10}(\mathrm{PO}_{4})_{6}(\mathrm{OH})_{2}\) (HAp). It allows to describe the temperature dependence of the electronic spin-lattice relaxation time \(\mathrm{T}_{1e}\) of the radiation-induced stable radical \(\mathrm{NO}_{3}^{2-}\) in HAp, which was measured in X-band (9 GHz, magnetic field strength of 0.34 T) in the temperature range T = (10–300) K. It is shown that the temperature behavior of \(T_{1e}\) at \(T>\) 20 K can be fitted via two-phonon Raman type processes with the Debye temperature \(\Theta _{\mathrm{D}} \approx 280\,{\mathrm{K}}\) evaluated from the phonon spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V. Uskovic, RSC Adv. 5, 36614–36633 (2015)

    Article  Google Scholar 

  2. M. Corno et al., Phys. Chem. Chem. Phys. 12, 6309–6329 (2010)

    Article  Google Scholar 

  3. A. Slepko, A.A. Demkov, Phys. Rev. B 84, 134108 (2011)

    Article  ADS  Google Scholar 

  4. V.S. Bystrov et al., J. Phys. D 48, 195302 (2015)

    Article  ADS  Google Scholar 

  5. B.V. Yavkin et al., Phys. Chem. Chem. Phys. 14, 2246–2249 (2012)

    Article  Google Scholar 

  6. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Dover Publications, New-York, 1986)

    Google Scholar 

  7. M. Mengeot, R.H. Bartram, O.R. Gilliam, Phys. Rev. B 11, 4110 (1975)

    Article  ADS  Google Scholar 

  8. L.G. Gilinskaya, M.J. Sherbakova, Physics of apatite. (Spectroscopic investigation of apatite), ed. by V.S. Sobolev (Publishing House “Nauka”: Novosibirsk, 1975), pp. 7–62 (in Russian)

  9. A.B. Brik et al., Miner. J. (Ukraine) 28, 20–31 (2006)

    Google Scholar 

  10. P. Fattibene, F. Callens, Appl. Radiat. Isot. 68, 2033–2116 (2010)

  11. P. Giannozzi, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  12. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  13. D. Vanderbilt, Phys. Rev. B 41, 7892–7895 (1990)

    Article  ADS  Google Scholar 

  14. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  15. T.B. Biktagirov et al., Opt. Spectrosc. 116, 715–720 (2014)

    Article  ADS  Google Scholar 

  16. T. Biktagirov, M. Gafurov, G. Mamin, E. Klimashina, V. Putlayev, S. Orlinskii, J. Phys. Chem. A 118, 1519–1526 (2014)

    Article  Google Scholar 

  17. M.R. Gafurov, T.B. Biktagirov et al., JETP Lett. 99, 196–203 (2014)

    Article  ADS  Google Scholar 

  18. M. Gafurov, T. Biktagirov, G. Mamin, S. Orlinskii, Appl. Magn. Reson. 45, 1189–1203 (2014)

    Article  Google Scholar 

  19. M. Gafurov et al., Phys. Chem. Chem. Phys. 17, 20331–20337 (2015)

    Article  Google Scholar 

  20. M.R. Gafurov et al., Supercond. Sci. Tech. 18, 352–355 (2005)

    Article  ADS  Google Scholar 

  21. L.K. Aminov et al., Physica C 349, 30–34 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  22. O.L. Anderson, J. Phys. Chem. Solids 12, 41–52 (1959)

    Article  ADS  Google Scholar 

  23. L. Bjerg, B.B. Iversen, G.K.H. Madsen, Phys. Rev. B 89, 024304 (2014)

    Article  ADS  Google Scholar 

  24. H. Sato et al., Radiat. Meas. 42, 997–1004 (2007)

    Article  Google Scholar 

  25. A. Slepko, A. Demkov, J. Appl. Phys. 117, 074701 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We dedicate this investigation to our teacher, colleague, and friend Dr. Igor N. Kurkin who has been actively engaged in EPR research at Kazan University since the beginning of 1960s and who is going to celebrate his 75th birthday in 2016 in front of an EPR spectrometer.This work was supported by the subsidy allocated to Kazan Federal University for the project part in the sphere of scientific activities. M.G. acknowledges the support of the Program of competitive Growth of Kazan Federal University among World’s Leading Academic Centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat Gafurov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biktagirov, T., Gafurov, M., Iskhakova, K. et al. Phonon Spectrum in Hydroxyapatite: Calculations and EPR Study at Low Temperatures. J Low Temp Phys 185, 627–632 (2016). https://doi.org/10.1007/s10909-015-1419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1419-2

Keywords

Navigation