Skip to main content
Log in

Excess Adsorption of Helium in Extremely Narrow Slit Pores

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Wave functions of quantum helium in narrow slit pores are strongly restricted; as such, quantum helium condensed in narrow slit pores displays different behaviors from that in bulk. Herein, we report the densities of helium adsorbed on carbon surfaces and in carbon slit pores with average pore widths of 0.7, 0.9, and 1.1 nm at 2–5 K. The density of adsorbed quantum helium in the 0.7-nm slit pores was significantly higher than those in the larger slit pores and bulk. The average layer density of helium in the 0.7-nm pores was also significantly higher than those in the larger slit pores, suggesting solid-like structure formation even under helium vapor condition. The highly dense state of helium in narrow slit pores is due to strong attractive potential effects in such slit pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Bera, J. Maloney, L.B. Lurio, N. Mulders, Z.G. Cheng, M.H.W. Chan, C.A. Burns, Z. Zhang, Phys. Rev. B 88, 054512 (2013)

  2. R. König, F. Pobell, Phys. Rev. Lett. 71, 2761 (1993)

    Article  ADS  Google Scholar 

  3. M. Boninsegni, D.M. Ceperley, Phys. Rev. Lett. 74, 2288 (1995)

    Article  ADS  Google Scholar 

  4. J.J. Beenakker, V.D. Borman, S.Y. Krylov, Chem. Phys. Lett. 232, 379 (1995)

    Article  ADS  Google Scholar 

  5. Q. Wang, S.R. Challa, D.S. Sholl, J.K. Johnson, Phys. Rev. Lett. 82, 956 (1999)

    Article  ADS  Google Scholar 

  6. X. Zhao, S. Villar-Rodil, A.J. Fletcher, K.M. Thomas, J. Phys. Chem. B 110, 9947 (2006)

    Article  Google Scholar 

  7. J.D. Reppy, J. Low Temp. Phys. 87, 205 (1992)

    Article  ADS  Google Scholar 

  8. K. Shirahama, K. Kubota, S. Ogawa, N. Wada, T. Watanabe, Phys. Rev. Lett. 64, 1541 (1990)

    Article  ADS  Google Scholar 

  9. N. Wada, M.W. Cole, J. Phys. Soc. Jpn. 77, 111012 (2008)

    Article  ADS  Google Scholar 

  10. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  11. P. Sindzingre, M.L. Klein, D.M. Ceperley, Phys. Rev. Lett. 63, 1601 (1989)

    Article  ADS  Google Scholar 

  12. E.S. Hernández, M.W. Cole, M. Boninsegni, J. Low Temp. Phys. 134, 309 (2004)

    Article  ADS  Google Scholar 

  13. S.M. Gatica, G. Stan, M.M. Calbi, J.K. Johnson, M.W. Cole, J. Low Temp Phys. 120, 337 (2000)

    Article  ADS  Google Scholar 

  14. M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 96, 105301 (2006)

    Article  ADS  Google Scholar 

  15. Q. Wang, J.K. Johnson, J.Q. Broughton, J. Chem. Phys. 107, 5108 (1997)

    Article  ADS  Google Scholar 

  16. L. Firlej, B. Kuchta, Colloids Surf. A 241, 149 (2004)

    Article  Google Scholar 

  17. Y.F. Yin, B. McEnaney, T.J. Mays, Carbon 36, 1425 (1998)

    Article  Google Scholar 

  18. T. Ohba, H. Kanoh, J. Phys. Chem. Lett. 3, 511 (2012)

    Article  Google Scholar 

  19. T. Ohba, A. Takase, Y. Ohyama, H. Kanoh, Carbon 61, 40 (2013)

    Article  Google Scholar 

  20. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998)

    Article  ADS  Google Scholar 

  21. P. Whitlock, G. Chester, B. Krishnamachari, Phys. Rev. B 58, 8704 (1998)

    Article  ADS  Google Scholar 

  22. M. Bretz, J. Dash, D. Hickernell, E. McLean, O. Vilches, Phys. Rev. A 8, 1589–1615 (1973)

    Article  ADS  Google Scholar 

  23. R.E. Ecke, J.G. Dash, Phys. Rev. B 28, 3738–3752 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. Katsumi Kaneko from Shinshu University, Japan for valuable discussions. This research was supported by the Japan Society for the Promotion of Science (KAKENHI Grant No. 26706001) and Research Fellowships from the Futaba Electronics Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Ohba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohba, T. Excess Adsorption of Helium in Extremely Narrow Slit Pores. J Low Temp Phys 177, 274–282 (2014). https://doi.org/10.1007/s10909-014-1214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1214-5

Keywords

Navigation