Skip to main content
Log in

Evidence of Griffiths Phase and Antiferromagnetic State in Bi-Doped LaMnO\(_{3}\)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The magnetic behavior of La\(_{1-x}\)Bi\(_{x}\)MnO\(_{3}\) (\(x = 0.20\), 0.25, 0.30, and 0.40) has been studied, with a Griffiths phase in particular for the sample \(x = 0.4\) with an isovalent Mn\(^{3+}\) for the whole system. The X-ray photoemission spectra (XPS) of each element for all prepared samples of La\(_{1-x}\)Bi\(_{x}\)MnO\(_{3}\) are the same, and have no obvious change due to the Bi ions doping. The Mn 2\(p\) core level XPS shows that the valence state of Mn ion is 3+, and stays in isovalent Mn\(^{3+}\) with increasing doping concentration. Zero-field-cooling and field-cooling curves demonstrate a traditional ferromagnetic to paramagnetic phase transition for all samples, but a special step-like behavior for \(x = 0.4\). For \(x = 0.4\), the Griffiths phase is observed above the Curie temperature\( T_{C}\), which is shown by the evidence of the downturn deviation from the Curie–Weiss linear law and the demonstration of a ferromagnetic cluster revealed by an isothermal magnetization and an Arrott plot. Below \(T_{C}\), an obvious antiferromagnetic state exists with a cusp at a characteristic temperature \(T_{f}\), which is also proved by the non-peak-shift with different frequency in the temperature dependence of the ac-susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  2. S.W. Han, J.-S. Kang, K.H. Kim, J.D. Lee, J.H. Kim, S.C. Wi, C. Mitra, P. Raychaudhuri, S. Wirth, K.J. Kim, B.S. Kim, J.I. Jeong, S.K. Kwon, B.I. Min, Phys. Rev. B 69, 104406 (2004)

    Article  ADS  Google Scholar 

  3. J.B.A.A. Elemans, B. Van Laar, K.R. Van Der Veen, B.O. Loopstra, J. Solid State Chem. 3, 238 (1971)

    Article  ADS  Google Scholar 

  4. H.D. Rosenfeld, M.A. Subramanian, J. Solid, State Chem. 125, 278 (1996)

    Article  ADS  Google Scholar 

  5. A. Karmakar, S. Majumdar, S. Kundu, T.K. Nath, S. Giri, J. Phys.: Condens. Matter. 24, 126003 (2012)

    ADS  Google Scholar 

  6. M.B. Salamon, P. Lin, S.H. Chun, Phys. Rev. Lett. 88, 197203 (2002)

    Article  ADS  Google Scholar 

  7. N. Rama, M.S. Ramachandra Rao, V. Sankaranarayanan, P. Majewski, S. Gepraegs, M. Opel, R. Gross, Phys. Rev. B 70, 224424 (2004)

  8. A.K. Pramanik, A. Banerjee, Phys. Rev B 81, 024431 (2010)

    Article  ADS  Google Scholar 

  9. H.G. Zhang, Y.T. Li, X.G. Dong, Q.T. Hou, Y.C. Huang, H. Liu, Q. Li, J. Phys. Conf. Ser. 430, 012072 (2013)

    Article  ADS  Google Scholar 

  10. Y.D. Zhao, J. Park, R.-J. Jung, H.-J. Noh, S.-J. Oh, J. Magn. Magn. Mater. 280, 404 (2004)

    Article  ADS  Google Scholar 

  11. I.O. Troyanchuk, O.S. Mantytskaja, H. Szymczak, M. Yu, Shvedun. Low Temp. Phys. 28, 569 (2002)

    Article  ADS  Google Scholar 

  12. T. Ogawa, A. Sandhu, M. Chiba, H. Takeuchi, Y. Koizumi, J. Magn. Magn. Mater. 290–291, 933 (2005)

    Article  Google Scholar 

  13. J. Matsuno, A. Fujimori, Y. Takeda, M. Takano, Europhys. Lett. 59(2), 252 (2002)

    Article  ADS  Google Scholar 

  14. K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)

    Article  ADS  Google Scholar 

  15. S.L. Huang, Z.C. Fan, J.B. Yi, B.C. Zhao, Y. Wu, K.Q. Ruan, M. Li, J. Ding, L. Wang, J. Phys.: Condens. Matter. 20, 395213 (2008)

    ADS  Google Scholar 

  16. J. Dho, W.S. Kim, N.H. Hur, Phys. Rev. Lett. 89, 027202 (2002)

    Article  ADS  Google Scholar 

  17. S. Kundu, T.K. Nath, J. Appl. Phys. 111, 112903 (2012)

    Article  Google Scholar 

  18. S.K. Giri, S.M. Yusuf, M.D. Mukadam, T.K. Nath, J. Alloys Compd. 591, 181 (2014)

    Article  Google Scholar 

  19. J. Dho, W.S. Kim, N.H. Hur, Phys. Rev. Lett. 89, 027202 (2002)

    Article  ADS  Google Scholar 

  20. T. Sudyoadsuk, R. Suryanarayanan, P. Winotai, L.E. Wenger, J. Magn. Magn. Mater. 278, 96 (2004)

    Article  ADS  Google Scholar 

  21. P. Sarkar, P. Mandal, Appl. Phys. Lett. 92, 052501 (2008)

    Article  ADS  Google Scholar 

  22. L. Downward, F. Bridges, S. Bushart, J.J. Neumeier, N. Dilley, L. Zhou, Phys. Rev. Lett. 95, 106401 (2005)

    Article  ADS  Google Scholar 

  23. W.J. Jiang, X.Z. Zhou, G. Williams, Y. Mukovskii, K. Glazyrin, Phys. Rev. B 77, 064424 (2008)

    Article  ADS  Google Scholar 

  24. J.A. Souza, J.J. Neumeier, Y.-K. Yu, Phys. Rev. B 78, 014436 (2008)

    Article  ADS  Google Scholar 

  25. H.G. Zhang, J.J. Shi, Y.T. Li, H. Liu, X.G. Dong, K. Chen, Q.T. Hou, Y.C. Huang, X.P. Ge, L. Zhao, Z.X. Lu, Q. Li, J. Low Temp. Phys. 169, 77 (2012)

    Article  ADS  Google Scholar 

  26. J. Deisenhofer, D. Braak, H.-A. Krug von Nidda, J. Hemberger, R.M. Eremina, V.A. Ivanshin, A.M. Balbashov, G. Jug, A. Loidl, T. Kimura, Y. Tokura, Phys. Rev. Lett. 95, 257202 (2005)

    Article  ADS  Google Scholar 

  27. W.J. Jiang, X.Z. Zhou, G. Williams, Y. Mukovskii, K. Glazyrin, Phys. Rev. Lett. 99, 177203 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (Grand No. U1232133), Jiangsu Youth Fund of Natural Science (No. BK20130858), and Natural Science Research in colleges and university in Jiangsu province (No. 13KJB140011). We thank for the beamtime offered by NSRL, USTC and the help in XPS measurement from Prof. H. B. Pan, USTC. We are grateful to Daniel. P. Hobbs, New York Institute of Technology, for providing help in our manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-guang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hg., Xie, L., Li, Yt. et al. Evidence of Griffiths Phase and Antiferromagnetic State in Bi-Doped LaMnO\(_{3}\) . J Low Temp Phys 178, 1–10 (2015). https://doi.org/10.1007/s10909-014-1213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1213-6

Keywords

Navigation