Skip to main content
Log in

Green Synthesis of Bi2WO6 Nanocompounds Decorated with Carbonaceous Materials for Visible-LEDs-Light-Driven Highly Efficient Degradation of Organic Pollutants

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Water contamination with dyes such as rhodamine B (RhB) affects living organisms and ecosystems. Heterogeneous photocatalysis has been successfully employed in RhB degradation. In this work, different Bi2WO6 (BWO)-carbonaceous material nanocomposites (NCs) were synthesized using simple and environmentally friendly procedures and applied as photocatalysts for the visible degradation of RhB. The decoration of BWO with nitrogen-doped graphene (NG) and NG functionalized with citric acid (FNG) enhanced the photocatalytic activity of NCs. The synthesis and performance of NG-BWO and FNG-BWO catalysts have no precedent. RhB and other dyes (methylene blue, crystal violet, and methyl orange) were used to test the activity of BWO NCs under low-power white LEDs irradiation. The 1.25FNG-BWO (1.25% FNG content) photocatalyst achieved the highest activity toward RhB degradation among the other prepared NCs, attaining 100% in 150 min with 19 W white LEDs, which is comparable to the activity reported in other studies using similar NCs and high-power (300–500 W) xenon and tungsten lamps, also representing a considerable energy saving of the process. The photoelectrochemical assays figured out that diffusion phenomena are responsible for RhB degradation rate using BWO NCs, and that the photocurrent changes are related mainly to their Eg. Photocatalytic cycles corroborated the high stability of 1.25FNG-BWO. Besides, holes (h+) and superoxides (\({O}_{2}^{\bullet -}\)) are the main oxidizing species of RhB, and the mechanism of charge transfer and RhB photodegradation using 1.25FNG-BWO was postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References 

  1. M.K. Hasan, A. Shahriar, K.U. Jim, Water pollution in Bangladesh and its impact on public health. Heliyon. 5(8), e02145 (2019). https://doi.org/10.1016/j.heliyon.2019.e02145

    Article  PubMed  PubMed Central  Google Scholar 

  2. M.A. Islam, I. Ali, S.A. Karim, M.S.H. Firoz, A.N. Chowdhury, D.W. Morton, M.J. Angove, Removal of dye from polluted water using novel nano manganese oxide-based materials. J. Water Process Eng. 32, 100911 (2019). https://doi.org/10.1016/j.jwpe.2019.100911

    Article  Google Scholar 

  3. A.L.D. da Rosa, E. Carissimi, G.L. Dotto, H. Sander, L.A. Feris, Biosorption of rhodamine B dye from dyeing stones effluents using the green microalgae Chlorella pyrenoidosa. J. Clean. Prod. 198, 1302–1310 (2018). https://doi.org/10.1016/j.jclepro.2018.07.128

    Article  CAS  Google Scholar 

  4. A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, M. Maqbool, Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem. 97, 111–128 (2021). https://doi.org/10.1016/j.jiec.2021.02.017

    Article  CAS  Google Scholar 

  5. S.S. Imam, H.F. Babamale, A short review on the removal of rhodamine B dye using agricultural waste-based adsorbents. Asian J. Chem. Sci. 7(1), 25–37 (2020). https://doi.org/10.9734/ajocs/2020/v7i119013

    Article  CAS  Google Scholar 

  6. K.A. Adegoke, O.R. Adegoke, A.O. Araoye, J. Ogunmodede, O.S. Agboola, O.S. Bello. Engineered raw, carbonaceous, and modified biomass-based adsorbents for Rhodamine B dye removal from water and wastewater. Bioresour. Technol. Rep. 101082 (2022). https://doi.org/10.1016/j.biteb.2022.101082.

  7. A.A. Al-Gheethi, Q.M. Azhar, P.S. Kumar, A.A. Yusuf, A.K. Al-Buriahi, R.M.S.R. Mohamed, M.M. Al-Shaibani, Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere 287, 132080 (2022). https://doi.org/10.1016/j.chemosphere.2021.132080

    Article  CAS  PubMed  Google Scholar 

  8. S. Marimuthu, A.J. Antonisamy, S. Malayandi, K. Rajendran, P.C. Tsai, A. Pugazhendhi, V.K. Ponnusamy, Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J. Photochem. Photobiol. B: Biol. 205, 111823 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111823

    Article  CAS  Google Scholar 

  9. Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, S.M. RezaeiDarvishi, ZnO photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation. Ind. Eng. Chem. Res. 59(36), 15894–15911 (2020). https://doi.org/10.1021/acs.iecr.0c03192

    Article  CAS  Google Scholar 

  10. N.R. Khalid, U. Mazia, M.B. Tahir, N.A. Niaz, M.A. Javid, Photocatalytic degradation of RhB from an aqueous solution using Ag3PO4/N-TiO2 heterostructure. J. Mol. Liq. 313, 113522 (2020). https://doi.org/10.1016/j.molliq.2020.113522

    Article  CAS  Google Scholar 

  11. W. Shi, W.X. Fang, J.C. Wang, X. Qiao, B. Wang, X. Guo, pH-controlled mechanism of photocatalytic RhB degradation over gC3N4 under sunlight irradiation. Photochem. Photobiol. Sci. 20, 303–313 (2021). https://doi.org/10.1007/s43630-021-00019-9

    Article  CAS  PubMed  Google Scholar 

  12. A. Akbari, Z. Sabouri, H.A. Hosseini, A. Hashemzadeh, M. Khatami, M. Darroudi, Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg. Chem. Commun. 115, 107867 (2020). https://doi.org/10.1016/j.inoche.2020.107867

    Article  CAS  Google Scholar 

  13. A. Sudhaik, P. Raizada, S. Rangabhashiyam, A. Singh, V.H. Nguyen, Q. Van Le, A.A. Parwaz-Khan, C. Hu, C.W. Huang, T. Ahamad, P. Singh, Copper sulfides based photocatalysts for degradation of environmental pollution hazards: A review on the recent catalyst design concepts and future perspectives. Surf. Interfaces. 33, 102182 (2022). https://doi.org/10.1016/j.surfin.2022.102182

    Article  CAS  Google Scholar 

  14. M.S. Al-Ja’farawy, A. Purwanto, H. Widiyandari, Carbon quantum dots supported zinc oxide (ZnO/CQDs) efficient photocatalyst for organic pollutant degradation–A systematic review. Environ. Nanotechnol. Monit. Manag. 18, 100681 (2022). https://doi.org/10.1016/j.enmm.2022.100681

    Article  CAS  Google Scholar 

  15. S.J. Segovia-Sandoval, H.J. Ojeda-Galván, A.I. Moral-Rodríguez, J. Rodríguez-Hernández, R.D. Peralta-Rodríguez, K.J. Gómez-Villegas, N.I. Hernández-Juárez, E. Mendoza-Mendoza, A novel green synthesis of Bi2WO6-based photocatalysts for efficient pollutants degradation using low-power UV-A LEDs. J. Alloys Compd. 911, 165018 (2022). https://doi.org/10.1016/j.jallcom.2022.165018

    Article  CAS  Google Scholar 

  16. A. Kaur, S.K. Kansal, Bi2WO6 nanocuboids: An efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase. Chem. Eng. J. 302, 194–203 (2016). https://doi.org/10.1016/j.cej.2016.05.010

    Article  CAS  Google Scholar 

  17. Y.H.B. Liao, J.X. Wang, J.S. Lin, W.H. Chung, W.Y. Lin, C.C. Chen, Synthesis, photocatalytic activities and degradation mechanism of Bi2WO6 toward crystal violet dye. Catal. Today 174(1), 148–159 (2011). https://doi.org/10.1016/j.cattod.2011.03.048

    Article  CAS  Google Scholar 

  18. M.T.L. Lai, C.W. Lai, K.M. Lee, S.W. Chook, T.C.K. Yang, S.H. Chong, J.C. Juan, Facile one-pot solvothermal method to synthesize solar active Bi2WO6 for photocatalytic degradation of organic dye. J. Alloys Compd. 801, 502–510 (2019). https://doi.org/10.1016/j.jallcom.2019.06.116

    Article  CAS  Google Scholar 

  19. T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Maugé, P. Beaunier, J.P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. J. Phys. Chem. C 115(13), 5657–5666 (2011). https://doi.org/10.1021/jp109134z

    Article  CAS  Google Scholar 

  20. A. Phuruangrat, A. Maneechote, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, Effect of pH on visible-light-driven Bi2WO6 nanostructured catalyst synthesized by hydrothermal method. Superlattices. Microstruct. 78, 106–115 (2015). https://doi.org/10.1016/j.spmi.2014.11.038

    Article  CAS  Google Scholar 

  21. Z. Zhang, W. Wang, M. Shang, W. Yin, Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst. J. Hazard. Mater. 177(1–3), 1013–1018 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.020

    Article  CAS  PubMed  Google Scholar 

  22. T. Chen, L. Liu, C. Hu, H. Huang, Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chinese J. Catal. 42(9), 1413–1438 (2021). https://doi.org/10.1016/S1872-2067(20)63769-X

    Article  CAS  Google Scholar 

  23. Y. Liu, B. Yang, H. He, S. Yang, X. Duan, S. Wang, Bismuth-based complex oxides for photocatalytic applications in environmental remediation and water splitting: A review. Sci. Total. Environ. 804, 150215 (2022). https://doi.org/10.1016/j.scitotenv.2021.150215

    Article  CAS  PubMed  Google Scholar 

  24. Z. Guan, X. Li, Y. Wu, Z. Chen, X. Huang, D. Wang, Q. Yang, J. Liu, S. Tian, X. Chen, H. Zhao, AgBr nanoparticles decorated 2D/2D GO/Bi2WO6 photocatalyst with enhanced photocatalytic performance for the removal of tetracycline hydrochloride. Chem. Eng. J. 410, 128283 (2021). https://doi.org/10.1016/j.cej.2020.128283

    Article  CAS  Google Scholar 

  25. H. Jiang, J. He, C. Deng, X. Hong, B. Liang, Advances in Bi2WO6-based photocatalysts for degradation of organic pollutants. Molecules 27(24), 8698 (2022). https://doi.org/10.3390/molecules27248698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. C.J. Chang, C.W. Wang, Y.H. Wei, C.Y. Chen, Enhanced photocatalytic H2 production activity of Ag-doped Bi2WO6-graphene based photocatalysts. Int. J. Hydrog. Energy 43(24), 11345–11354 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.091

    Article  CAS  Google Scholar 

  27. S.G. Kumar, K.K. Rao, Tungsten-based nanomaterials (WO3 & Bi2WO6): modifications related to charge carrier transfer mechanisms and photocatalytic applications. Appl. Surf. Sci. 355, 939–958 (2015). https://doi.org/10.1016/j.apsusc.2015.07.003

    Article  CAS  Google Scholar 

  28. X. Wei, M.U. Akbar, A. Raza, G. Li, A review on bismuth oxyhalide based materials for photocatalysis. Nanoscale. Adv. 3(12), 3353–3372 (2021). https://doi.org/10.1039/D1NA00223F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. T. Xu, Y. Zhu, J. Duan, Y. Xia, T. Tong, L. Zhang, D. Zhao, Enhanced photocatalytic degradation of perfluorooctanoic acid using carbon-modified bismuth phosphate composite: Effectiveness, material synergy and roles of carbon. Chem. Eng. J. 395, 124991 (2020). https://doi.org/10.1016/j.cej.2020.124991

    Article  CAS  Google Scholar 

  30. Y. Naciri, A. Hsini, Z. Ajmal, J.A. Navío, B. Bakiz, A. Albourine, M. Ezahri, A. Benlhachemi, Recent progress on the enhancement of photocatalytic properties of BiPO4 using π–conjugated materials. Adv. Colloid. Interface. Sci. 280, 102160 (2020). https://doi.org/10.1016/j.cis.2020.102160

    Article  CAS  PubMed  Google Scholar 

  31. P.K. Sane, D. Rakte, S. Tambat, R. Bhalinge, S.M. Sontakke, P. Nemade, Enhancing solar photocatalytic activity of Bi5O7I photocatalyst with activated carbon heterojunction. Adv. Powder Technol. 33(1), 103357 (2022). https://doi.org/10.1016/j.apt.2021.11.009

    Article  CAS  Google Scholar 

  32. X. Yang, C. Li, J. Wang, J. Zhang, F. Wang, R. Li, C. Li, Graphene dispersed Bi2WO6 nanosheets with promoted interfacial charge separation for visible light photocatalysis. Chem. Cat. Chem. 11(22), 5487–5494 (2019). https://doi.org/10.1002/cctc.201901137

    Article  CAS  Google Scholar 

  33. Y.L. Min, K. Zhang, Y.C. Chen, Y.G. Zhang, Enhanced photocatalytic performance of Bi2WO6 by graphene supporter as charge transfer channel. Sep. Purif. Technol. 86, 98–105 (2012). https://doi.org/10.1016/j.seppur.2011.10.025

    Article  CAS  Google Scholar 

  34. X. Hu, X. Meng, Z. Zhang, Synthesis and characterization of graphene oxide-modified Bi2WO6 and its use as photocatalyst. Int. J. Photoenergy 2016, 1–8 (2016). https://doi.org/10.1155/2016/8730806

    Article  CAS  Google Scholar 

  35. P.J. Mafa, B. Ntsendwana, B.B. Mamba, A.T. Kuvarega, Visible light driven ZnMoO4/BiFeWO6/rGO Z-scheme photocatalyst for the degradation of anthraquinonic dye. J. Phys. Chem. C 123(33), 20605–20616 (2019). https://doi.org/10.1021/acs.jpcc.9b05008

    Article  CAS  Google Scholar 

  36. C. Chen, S. Cao, W. Yu, X. Xie, Q. Liu, Y. Tsang, Y. Xiao, Adsorption, photocatalytic and sunlight-driven antibacterial activity of Bi2WO6/graphene oxide nanoflakes. Vacuum 116, 48–53 (2015). https://doi.org/10.1016/j.vacuum.2015.02.031

    Article  CAS  Google Scholar 

  37. W. Chen, T.Y. Liu, T. Huang, X.H. Liu, J.W. Zhu, G.R. Duan, X.J. Yang, In situ fabrication of novel Z-scheme Bi2WO6 quantum dots/g-C3N4 ultrathin nanosheets heterostructures with improved photocatalytic activity. Appl. Surf. Sci. 355, 379–387 (2015). https://doi.org/10.1016/j.apsusc.2015.07.111

    Article  CAS  Google Scholar 

  38. H. Yu, C. Chu, P.K. Chu, Self-assembly and enhanced visible-light-driven photocatalytic activity of reduced graphene oxide-Bi2WO6 photocatalysts. Nanotechnol. Rev. 6(6), 505–516 (2017). https://doi.org/10.1515/ntrev-2017-0153

    Article  CAS  Google Scholar 

  39. R. Sun, R. Li, S. Zhong, N. Song, Z. Zhao, S. Zhang, Synthesis of efficient Y-Bi2WO6/G visible light photocatalysts with high stability for pollutant degradation. Environ. Sci. Pollut. Res. 28, 27864–27877 (2021). https://doi.org/10.1007/s11356-021-12666-7

    Article  CAS  Google Scholar 

  40. Z. Du, C. Cui, S. Zhang, H. Xiao, E. Ren, R. Guo, S. Jiang, Visible-light-driven photocatalytic degradation of rhodamine B using Bi2WO6/GO deposited on polyethylene terephthalate fabric. J. Leather Sci. Eng. 2, 1–10 (2020). https://doi.org/10.1186/s42825-020-00029-w

    Article  Google Scholar 

  41. H. Yu, C. Chu, X. An, Enhanced visible-light-driven photocatalytic activity of F doped reduced graphene oxide-Bi2WO6 photocatalyst. Appl. Organomet. Chem. 33(1), e4682 (2019). https://doi.org/10.1002/aoc.4682

    Article  CAS  Google Scholar 

  42. X. Xu, F. Ming, J. Hong, Y. Xie, Z. Wang, Three-dimensional porous aerogel constructed by Bi2WO6 nanosheets and graphene with excellent visible-light photocatalytic performance. Mater. Lett. 179, 52–56 (2016). https://doi.org/10.1016/j.matlet.2016.05.031

    Article  CAS  Google Scholar 

  43. M.A. Mohamed, N.A. Elessawy, F. Carrasco-Marín, H.A. Hamad, A novel one-pot facile economic approach for the mass synthesis of exfoliated multilayered nitrogen-doped graphene-like nanosheets: new insights into the mechanistic study. Phys. Chem. Chem. Phys. 21(25), 13611–13622 (2019). https://doi.org/10.1039/C9CP01418G

    Article  CAS  PubMed  Google Scholar 

  44. S.J. Segovia-Sandoval, E. Mendoza-Mendoza, A. Jacobo-Azuara, B.A. Jiménez-López, A.C. Hernández-Arteaga, Highly efficient visible-LED-driven photocatalytic degradation of tetracycline and rhodamine B over Bi2WO6/BiVO4 heterostructures decorated with silver and graphene synthesized by a novel green method, Environ. Sci. Pollut. Res. (2023) 1–16. https://doi.org/10.1007/s11356-023-27731-6.

  45. F. Zhou, Y. Zhu, Significant photocatalytic enhancement in methylene blue degradation of Bi2WO6 photocatalysts via graphene hybridization. J. Adv. Ceram. 1(1), 7 (2012). https://doi.org/10.1007/s40145-012-0008-y

    Article  CAS  Google Scholar 

  46. X. Fan, X. Yue, J. Luo, C. Wang, Facile synthesis of carbon-Bi2WO6 with enhanced visible-light photocatalytic activities. J. Nanopart. Res. 18, 1–9 (2016). https://doi.org/10.1007/s11051-016-3368-3

    Article  CAS  Google Scholar 

  47. B.A. Jiménez-López, R. Leyva-Ramos, J.J. Salazar-Rábago, A. Jacobo-Azuara, A. Aragón- Piña, Adsorption of selenium (IV) oxoanions on calcined layered double hydroxides of Mg-Al-CO3 from aqueous solution. Effect of calcination and reconstruction of lamellar structure. Environ. Nanotechnol. Monit. Manag. 16, 100580 (2021). https://doi.org/10.1016/j.enmm.2021.100580

    Article  CAS  Google Scholar 

  48. C.B. García-Reyes, J.J. Salazar-Rábago, M. Sánchez-Polo, M. Loredo-Cancino, R. Leyva-Ramos, Ciprofloxacin, ranitidine, and chlorphenamine removal from aqueous solution by adsorption Mechanistic and regeneration analysis. Environ. Technol. Innov. 24, 102060 (2021). https://doi.org/10.1016/j.eti.2021.102060

    Article  CAS  Google Scholar 

  49. T. Bunluesak, A. Phuruangrat, S. Tthongtem, T. Thongtem, Photocatalytic reaction of heterostructure Ag09Pd01/Bi2WO6 nanocomposites to rhodamine b under visible light irradiation. Dig. J. Nanomater. Biostruct. 15(3), 913–921 (2020)

    Article  Google Scholar 

  50. Y. Huang, X. Yin, P. He, S. Kou, X. Zhang, L. Wang, P. Lu, Peroxymonosulfate activation by Bi2WO6/BiOCl heterojunction nanocomposites under visible light for bisphenol A degradation. Nanomater. 11(11), 3130 (2021). https://doi.org/10.3390/nano11113130

    Article  CAS  Google Scholar 

  51. K. Bunpang, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, C. Liewhiran, Effects of reduced graphene oxide loading on gas-sensing characteristics of flame-made Bi2WO6 nanoparticles. Appl. Surf. Sci. 496, 143613 (2019). https://doi.org/10.1016/j.apsusc.2019.143613

    Article  CAS  Google Scholar 

  52. A.Y. Lee, K. Yang, N.D. Anh, C. Park, S.M. Lee, T.G. Lee, M.S. Jeong, Raman study of D* band in graphene oxide and its correlation with reduction. Appl. Surf. Sci. 536, 147990 (2021). https://doi.org/10.1016/j.apsusc.2020.147990

    Article  CAS  Google Scholar 

  53. G. Surekha, K.V. Krishnaiah, N. Ravi, R.P. Suvarna, FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. J. Phys: Conf. Ser. 1495, 012012 (2020). https://doi.org/10.1088/1742-6596/1495/1/012012

    Article  CAS  Google Scholar 

  54. Y. Qiu, J. Lu, Y. Yan, J. Niu, Enhanced visible-light-driven photocatalytic degradation of tetracycline by 16% Er3+-Bi2WO6 photocatalyst. J. Hazard. Mater. 422, 126920 (2022). https://doi.org/10.1016/j.jhazmat.2021.126920

    Article  CAS  PubMed  Google Scholar 

  55. Y. Zhao, X. Liang, X. Hu, J. Fan, rGO/Bi2WO6 composite as a highly efficient and stable visible-light photocatalyst for norfloxacin degradation in aqueous environment. J. Colloid Interface Sci. 589, 336–346 (2021). https://doi.org/10.1016/j.jcis.2021.01.016

    Article  CAS  PubMed  Google Scholar 

  56. Y.Z.N. Htwe, W.S. Chow, Y. Suda, A.A. Thant, M. Mariatti, Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process. Appl. Surf. Sci. 469, 951–961 (2019). https://doi.org/10.1016/j.apsusc.2018.11.029

    Article  CAS  Google Scholar 

  57. N. Lv, Y. Li, Z. Huang, T. Li, S. Ye, D.D. Dionysiou, X. Song, Synthesis of GO/TiO2/Bi2WO6 nanocomposites with enhanced visible light photocatalytic degradation of ethylene. Appl. Catal. B Environ. 246, 303–311 (2019). https://doi.org/10.1016/j.apcatb.2019.01.068

    Article  CAS  Google Scholar 

  58. S.J. Segovia-Sandoval, E. Mendoza-Mendoza, A. Jacobo-Azuara, R. Leyva-Ramos, H.J. Ojeda-Galván, J. Rodríguez-Hernández, I.R. Galindo-Esquivel, Visible-LEDs-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunctions prepared by a novel and green methodology. New J. Chem. 47, 12403–12417 (2023). https://doi.org/10.1039/D3NJ01024D

    Article  CAS  Google Scholar 

  59. J. He, Y. Liu, M. Wang, Y. Wang, F. Long, Ionic liquid-hydrothermal synthesis of Z-scheme BiOBr/Bi2WO6 heterojunction with enhanced photocatalytic activity. J. Alloys Compd. 865, 158760 (2021). https://doi.org/10.1016/j.jallcom.2021.158760

    Article  CAS  Google Scholar 

  60. P. Ahuja, S.K. Ujjain, R. Kanojia, P. Attri, Transition metal oxides and their composites for photocatalytic dye degradation. J. Compos. Sci. 5(3), 82 (2021). https://doi.org/10.3390/jcs5030082

    Article  CAS  Google Scholar 

  61. S.J. Segovia-Sandoval, E. Padilla-Ortega, F. Carrasco-Marín, M.S. Berber-Mendoza, R. Ocampo-Pérez, Simultaneous removal of metronidazole and Pb (II) from aqueous solution onto bifunctional activated carbons. Environ. Sci. Pollut. Res. 26, 25916–25931 (2019). https://doi.org/10.1007/s11356-019-05857-w

    Article  CAS  Google Scholar 

  62. A. Jakimińska, M. Pawlicki, W. Macyk, Photocatalytic transformation of rhodamine B to rhodamine-110–The mechanism revisited. J. Photochem. Photobiol. A: Chem. 433, 114176 (2022). https://doi.org/10.1016/j.jphotochem.2022.114176

    Article  CAS  Google Scholar 

  63. P.A. Luque, H.E. Garrafa-Gálvez, O. Nava, A. Olivas, M.E. Martínez-Rosas, A.R. Vilchis-Nestor, A. Villegas-Fuentes, M.J. Chinchillas-Chinchillas, Efficient sunlight and UV photocatalytic degradation of Methyl Orange, Methylene Blue and Rhodamine B, using Citrus×paradisi synthesized SnO2 semiconductor nanoparticles. Ceram. Int. 47(17), 23861–23874 (2021). https://doi.org/10.1016/j.ceramint.2021.05.094

    Article  CAS  Google Scholar 

  64. A.I. Moral-Rodríguez, M. Quintana, R. Leyva-Ramos, H.J. Ojeda-Galvan, S. Oros-Ruiz, R.D. Peralta-Rodríguez, E. Mendoza-Mendoza, Novel and green synthesis of BiVO4 and GO/BiVO4 photocatalysts for efficient dyes degradation under blue LED illumination. Ceram. Int. 48(1), 1264–1276 (2022). https://doi.org/10.1016/j.ceramint.2021.09.211

    Article  CAS  Google Scholar 

  65. K. Grzhegorzhevskii, A. Ostroushko, O. Koriakova, I. Ovchinnikova, G. Kim, Photoinduced charge transfer in the supramolecular structure based on toroid polyoxomolibdate Mo138 and xanthene dye–Rhodamine-B. Inorganica Chim. Acta. 436, 205–213 (2015). https://doi.org/10.1016/j.ica.2015.07.041

    Article  CAS  Google Scholar 

  66. M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J. Colloid Interface Sci. 480, 218–231 (2016). https://doi.org/10.1016/j.jcis.2016.07.021

    Article  CAS  PubMed  Google Scholar 

  67. F. Ma, Q. Yang, Z. Wang, Y. Liu, J. Xin, J. Zhang, Y. Hao, L. Li, Enhanced visible-light photocatalytic activity and photostability of Ag3PO4/Bi2WO6 heterostructures toward organic pollutant degradation and plasmonic Z-scheme mechanism. RSC Adv. 8(28), 15853–15862 (2018). https://doi.org/10.1039/C8RA01477A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. B.G. Narváez, E. Mendoza-Mendoza, R.D. Peralta-Rodríguez, H. Bach, E.D. Barriga-Castro, S.J. Segovia-Sandoval, F. Martinez-Gutierrez, Visible-LEDs-induced enhanced photocatalytic and antibacterial activity of BiVO4-based green photocatalysts decorated with silver and graphene. J. Photochem. Photobiol. A: Chem. 447, 115191 (2024). https://doi.org/10.1016/j.jphotochem.2023.115191

    Article  CAS  Google Scholar 

  69. S. Zhong, B. Wang, H. Zhou, C. Li, X. Peng, S. Zhang, Fabrication and characterization of Ag/BiOI/GO composites with enhanced photocatalytic activity. J. Alloys Compd. 806, 401–409 (2019). https://doi.org/10.1016/j.jallcom.2019.07.223

    Article  CAS  Google Scholar 

  70. P.C. Nethravathi, M.V. Manjula, S. Devaraja, D. Suresh, Ag and BiVO4 decorated reduced graphene oxide: A potential nano hybrid material for photocatalytic, sensing and biomedical applications. Inorg. Chem. Commun. 139, 109327 (2022). https://doi.org/10.1016/j.inoche.2022.109327

    Article  CAS  Google Scholar 

  71. Y. Si, Y. Chen, Y. Fu, X. Zhang, F. Zuo, T. Zhang, Q. Yan, Hierarchical self-assembly of graphene-bridged on AgIO3/BiVO4: An efficient heterogeneous photocatalyst with enhanced photodegradation of organic pollutant under visible light. J. Alloys Compd. 831, 154820 (2020). https://doi.org/10.1016/j.jallcom.2020.154820

    Article  CAS  Google Scholar 

  72. C. Qin, H. Liao, F. Rao, J. Zhong, J. Li, One-pot hydrothermal preparation of Br-doped BiVO4 with enhanced visible-light photocatalytic activity. Solid State Sci. 105, 106285 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106285

    Article  CAS  Google Scholar 

  73. J. Sihvo, D.I. Stroe, T. Messo, T. Roinila, Fast approach for battery impedance identification using pseudo-random sequence signals. IEEE Trans. Power Electron. 35(3), 2548–2557 (2019). https://doi.org/10.1109/TPEL.2019.2924286

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the National Council of Humanities Science and Technology (CONAHCYT, Mexico) for supporting this research via INFRA-2018-294130 and CB-2016-285350 projects. Also, E. Mendoza-Mendoza thanks CONAHCYT for the Researchers for Mexico Program, project number 864. B.A. Jiménez-López, M. Olvera-Sosa, and S.J. Segovia-Sandoval are grateful to CONAHCYT for approved Postdoctoral fellowships (CVU No. 711678, 624992, and 558579). Our gratitude to the Micro and Nanofluidic CONAHCYT National Laboratory.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

KJGV carried out data curation, methodology, investigation, and writing-original draft preparation. BAJL accomplished methodology, investigation, writing-original draft preparation, and visualization. MOS performed data curation, methodology, investigation, writing-original draft preparation, and visualization. LFCR carried out conceptualization, supervision, methodology, writing, reviewing, and editing. SJSS accomplised interpretation of data, and characterization of bismuth-based nanocomposites. EMM performed funding acquisition, investigation, project administration, supervision, methodology, writing, reviewing, and editing. All authors revised and approved the submitted version of manuscript.

Corresponding authors

Correspondence to Brenda Azharel Jiménez-López or Esmeralda Mendoza-Mendoza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3.15 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Villegas, K., Jiménez-López, B.A., Olvera-Sosa, M. et al. Green Synthesis of Bi2WO6 Nanocompounds Decorated with Carbonaceous Materials for Visible-LEDs-Light-Driven Highly Efficient Degradation of Organic Pollutants. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03072-w

Keywords

Navigation