Skip to main content
Log in

Evaluation of Physical Properties of A2ScCuCl6 (A = K, Rb, and Cs) Double Perovskites via DFT Framework

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Herein, the structural, mechanical, optoelectronic, and transport properties of double perovskites A2ScCuCl6 (A = K, Rb, and Cs) have been determined through simulations using density functional theory. The stability of K2ScCuCl6, Rb2ScCuCl6, and Cs2ScCuCl6 compounds is supported by the optimization of structural configuration and estimation of negative formation energy. The mechanical parameters are computed to quantify mechanical strength, stability, and anisotropy. The compounds that were investigated exhibit semiconductor properties, with an indirect bandgap of 1.55, 1.43, and 1.30 eV using TB-mBJ potential, respectively. The density of states also reveals the band gap and semiconductor properties of the materials. The optical characteristics of the materials have been analyzed in terms of the dielectric function, absorption, reflectance, and optical loss. The projected low excitons binding energy, high absorbance in visible and ultraviolet regions, minimal reflectivity, and energy loss suggest that these materials are highly recommended for utilization in solar energy technology. We examined the transport characteristics that vary with temperature. The combination of high electrical conductivity, moderate thermal conductivity, and higher ZT values of 0.81, 0.86, and 0.77 makes them promising candidates for thermoelectric applications. This analysis ensures that these materials can be utilized in energy conversion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. H. Tang, S. He, C. Peng, A short progress report on high-efficiency perovskite solar cells. Nanoscale Res. Lett. 12, 1–8 (2017)

    Article  Google Scholar 

  2. A. ul Haq, T.S. Ahmad, A. Ahmad, B.S. Almutairi, M. Amin, M.I. Khan, N. Ehsan, R. Sharma,  A2LiGaI6 (A = Cs, Rb): New lead-free and direct bandgap halide double perovskites for IR application. Heliyon 9, 11 (2023)

    Google Scholar 

  3. F. Giustino, Snaith. Toward lead-free perovskite solar cells. ACS Energy Lett. 1(6), 1233–1240 (2016)

    Article  CAS  Google Scholar 

  4. Y. Dang, C. Zhong, G. Zhang, D. Ju, L. Wang, S. Xia, H. Xia, X. Tao, Crystallographic investigations into properties of acentric hybrid perovskite single crystals NH (CH3)3SnX3 (X = cl, br). Chem. Mater. 28(19), 6968–6974 (2016)

    Article  CAS  Google Scholar 

  5. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. C. Lee, J. Hong, A. Stroppa, M.-H. Whangbo, S. Ji Hoon, Organic–inorganic hybrid perovskites ABI3 (A = CH3NH3, NH2CHNH2; B = sn, pb) as potential thermoelectric materials: a density functional evaluation. RSC Adv. 5(96), 78701–78707 (2015)

    Article  ADS  CAS  Google Scholar 

  7. T. Zhao, W. Shi, J. Xi, D. Wang, Z. Shuai, Intrinsic and extrinsic charge transport in CH3NH3PbI3 perovskites predicted from first-principles. Sci. Rep. 6, 1 (2016)

    Google Scholar 

  8. S. Choudhary, S. Tomar, D. Kumar, S. Kumar, V. Ajay Singh, estigations of lead free halides in sodium based double perovskites Cs2NaBiX6 (x = cl, br, i): an ab intio study. East. Eur. J. Phys. 3, 74–80 (2021)

    Article  Google Scholar 

  9. Z. Xiao, Z. Song, Y. Yan, From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31(47), 1803792 (2019)

    Article  CAS  Google Scholar 

  10. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin et al., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. R. Ahmad, G.V. Nutan, D. Singh, G. Gupta, U. Soni, S. Sapra, R. Srivastava, Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: synthesis, uniform thin-film fabrication, and application in solution-processed solar cells. Nano Res. 14, 1126–1134 (2021)

    Article  ADS  CAS  Google Scholar 

  12. X. Yang, L. Ma, M. Yu, H.-H. Chen, Y. Ji, A.H.Q. Zhong et al., Focus on perovskite emitters in blue light-emitting diodes. Light Sci. Appl. 12(1), 177 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. T. Leijtens, E.T. Hoke, G. Grancini, D.J. Slotcavage, G.E. Eperon, J.M. Ball, M. De Bastiani et al., Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015)

    Article  Google Scholar 

  14. D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J.R. Durrant, A. Saif, Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9(5), 1655–1660 (2016)

    Article  CAS  Google Scholar 

  15. G. Li, K. Chen, Y. Cui, Y. Zhang, Y. Tian, B. Tian, Y. Hao, Y. Wu, H. Zhang, Stability of perovskite light sources: status and challenges. Adv. Opt. Mater. 8(6), 1902012 (2020)

    Article  CAS  Google Scholar 

  16. S. Chakraborty, W. Xie, N. Mathews, M. Sherburne, R. Ahuja, M. Asta, G. Subodh, S.G. Mhaisalkar, Rational design: a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2(4), 837–845 (2017)

    Article  CAS  Google Scholar 

  17. A.D. Jodlowski, D. Rodríguez-Padrón, R. Luque, G. De Miguel, Alternative perovskites for photovoltaics. Adv. Energy Mater. 8, 21 (2018)

    Article  Google Scholar 

  18. M.A. Razzaq, Optoelectronic study of double perovskite Rb2SnBr6: a first principles calculations. Glob J. Mater. Sci. Eng. 2, 1–5 (2020)

    Google Scholar 

  19. J. Glodo, R. Hawrami, E. Van Loef, W. Higgins, U. Shirwadkar, S. Kanai, Shah, Dual gamma neutron detection with Cs [sub] 2 [/sub] LiLaCl [sub] 6 [/sub]. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XI, vol. 7449, 93–99. SPIE, (2009)

  20. J.S. Kim, Bright and stable near-infrared perovskite light emitters supported by multifunctional molecule design strategy. Light Sci. Appl. 12(1), 232 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. Zhang, J. Miao, J. Li, Q. Li, Halide perovskite materials for energy storage applications. Adv. Funct. Mater. 30(40), 2003653 (2020)

    Article  CAS  Google Scholar 

  22. M. Al-Hattab, K. Rahmani, Thermodynamic, optical, and morphological studies of the Cs2AgBiX6 double perovskites (X = cl, br, and I): insights from DFT study. J. Alloys Compd. 960, 170650 (2023)

    Article  Google Scholar 

  23. S. Yang, M. Joo, H. Kim, D.H. Ko, J.H. Sin, J. Sung, J. Mun, J. Rho, M.-H. Jo, K. Cho, Visualization and Investigation of charge transport in mixed‐halide perovskite via lateral‐structured photovoltaic devices. Adv. Funct. Mater. 28(41), 1804067 (2018)

    Article  Google Scholar 

  24. A. Ahmad, G. Murtaza, M. Shafiq, N. Sfina, S. Ali, Exploring structural, thermodynamic, elastic, electro-optic, and thermoelectric characteristics of double perovskites Rb2XInBr6 (X = na, K) for photovoltaic applications: a DFT approach. Sol. Energy 265, 112131 (2023)

    Article  ADS  Google Scholar 

  25. A. Ahmad, G. Murtaza, M. Umer, A. Usman, H.H. Raza, Structural, elastic, optoelectronic, and transport properties of Na-based halide double perovskites Na2CuMX6 (M = sb, Bi, and X = cl, br) as renewable energy materials: a DFT insight. J. Mater. Res. 38(20), 4609–4624 (2023)

    Article  ADS  Google Scholar 

  26. S. Niaz, M.A. Khan, N.A. Noor, H. Ullah, R. Neffati, Bandgap tuning and thermoelectric characteristics of Sc-based double halide perovskites K2ScAgZ6 (Z = Cl, Br, I) for solar cells applications. J. Phys. Chem. Solids 174, 111115 (2023)

    Article  CAS  Google Scholar 

  27. D.-Y. Hu, X.-H. Zhao, T.-Y. Tang, L. Li, T. Yan-Lin, Insights on structural, elastic, electronic and optical properties of double-perovskite halides Rb2CuBiX6 (X = Br, Cl). J. Phys. Chem. Solids 167, 110791 (2022)

    Article  CAS  Google Scholar 

  28. A. Harbi, S. Bouhmaidi, R.K. Pingak, L. Setti, M. Moutaabbid, First-principles calculations to investigate optoelectronic, thermoelectric and elastic properties of novel lead-free halide perovskites CsRbPtX6 (X = Cl, Br and I) compounds for solar cells applications. Phys. B Condens. Matter 668, 415242 (2023)

    Article  CAS  Google Scholar 

  29. D.-Y. Hu, X.-H. Zhao, T.-Y. Tang, L.-M. Lu, L. Li, L.-K. Gao, T. Yan-Lin, Exploring the structural, electronic and optical properties of vacancy-ordered double perovskites Cs2TlAsX6 (X = I, Br, Cl) based on first-principles. Phys. Lett. A 427, 127917 (2022)

    Article  CAS  Google Scholar 

  30. D.-Y. Hu, X.-H. Zhao, T.-Y. Tang, L.-M. Lu, L. Li, T. Yan-Lin, Study on the structural, electronic and optical properties of double-perovskite halides Cs2AgSbX6 (X = I, Br, Cl) based on first-principles. Mater. Sci. Semiconduct. Process. 152, 107077 (2022)

    Article  CAS  Google Scholar 

  31. T.-Y. Tang, X.-H. Zhao, X.-N. Wei, D.-Y. Hu, L.-K. Gao, T. Yan-Lin, Study on electronic, mechanical and optical properties of perovskite Cs2AgGaX6 (X = Cl, Br). J. Nanoelectron. Optoelectron. 16(10), 1521–1527 (2021)

    Article  CAS  Google Scholar 

  32. G.M. Mustafa, M. Maqbool, Z. Ullah, N.A. Noor, M. Muzamil, Y.M. Alanazi, S. Mumtaz, Computational investigations of optoelectronic properties of K2ScAuX6 (X = Cl, Br) double perovskites for energy harvesting devices. Chem. Phys. 571, 111920 (2023)

    Article  CAS  Google Scholar 

  33. A. Ahmad, M. Murtaza, A. Usman, M. Umer, M.Q. Shah, H.S. Ali, First principles insight on mechanical stability, optical and thermoelectric response of novel lead-free Rb2ScCuBr6 and Cs2ScCuBr6 double perovskites. Mater. Sci. Semiconduct. Process. 169, 107910 (2024)

    Article  Google Scholar 

  34. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K. Madsen, L.D. Marks, WIEN2k: an APW+ lo program for calculating the properties of solids. J. Chem. Phys. 152, 7 (2020)

    Article  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 18 (1996)

    Article  Google Scholar 

  36. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  ADS  PubMed  Google Scholar 

  37. M. Jamal, M. Bilal, I. Ahmad, IRelast package. J. Alloys Compd. 735, 569–579 (2018)

    Article  CAS  Google Scholar 

  38. G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006)

    Article  ADS  CAS  Google Scholar 

  39. C.-J. Yu, I.-C. Ri, H.-M. Ri, J.-H. Jang, Y.-S. Kim, J. Un-Gi, First-principles study on structural, electronic and optical properties of halide double perovskite Cs2AgBX6 (B = In, Sb; X = F, Cl, Br, I). RSC Adv. 13(23), 16012–16022 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. F. Milstein, R. Hill, Divergences among the born and classical stability criteria for cubic crystals under hydrostatic loading. Phys. Rev. Lett. 43(19), 1411 (1979)

    Article  ADS  CAS  Google Scholar 

  41. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scripta Mater. 108, 1–5 (2015)

    Article  ADS  CAS  Google Scholar 

  42. W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185(6), 1747–1758 (2014)

    Article  ADS  CAS  Google Scholar 

  43. V.G. Tyuterev, N. Vast, Murnaghan’s equation of state for the electronic ground state energy. Comput. Mater. Sci. 38(2), 350–353 (2006)

    Article  CAS  Google Scholar 

  44. L. Peedikakkandy, P. Bhargava, Composition dependent optical, structural and photoluminescence characteristics of cesium tin halide perovskites. RSC Adv. 6(24), 19857–19860 (2016)

    Article  ADS  CAS  Google Scholar 

  45. X. Diao, Y. Tang, Q. Gu, Y. Shi, P. Zhu, The Structural, stability, electronic and optoelectronics properties of Y2AgBiX6 (Y = K, Na, Li; X = I, Br, Cl) halide double perovskites: a first-principles study. Sol. Energy 262, 111914 (2023)

    Article  ADS  CAS  Google Scholar 

  46. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A  65(5), 349 (1952)

    Article  ADS  Google Scholar 

  47. W. Voigt, Lehrbuch der Kristallphysik (Textbook of crystal physics). BG Teubner, Leipzig und Berlin (1928)

  48. M.A.H. Shah, M. Nuruzzaman, A. Hossain, M. Jubair, Zilani. A DFT insight into structural, mechanical, elasto-acoustic, and anisotropic properties of AePdH3 (Ae = Ca, Sr, Ba) perovskites under pressure. Comput. Condens. Matter 34, e00774 (2023)

    Article  Google Scholar 

  49. G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson’s ratio and modern materials. Nat. Mater. 10(11), 823–837 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. A. Bakar, A.O. Alrashdi, M.M. Fadhali, A. Afaq, H.A. Yakout, M. Asif, Effect of pressure on structural, elastic and mechanical properties of cubic perovskites XCoO3 (X = Nd, Pr) from first-principles investigations. J. Mater. Res. Technol. (2022). https://doi.org/10.1016/j.jmrt.2022.06.126

    Article  Google Scholar 

  51. Q. Mahmood, M.H. Alhossainy, M.S. Rashid, T.H. Flemban, H. Althib, T. Alshahrani, M. Rashid, A. Laref, First-principles study of lead-free double perovskites Rb2TeX6 (X = Cl, Br, and I) for solar cells and renewable energy. Mater. Sci. Eng. B 266, 115064 (2021)

    Article  CAS  Google Scholar 

  52. A. Maachou, H. Aboura, B. Amrani, R. Khenata, S. Bin Omran, D. Varshney, Structural stabilities, elastic and thermodynamic properties of scandium chalcogenides via first-principles calculations. Comput. Mater. Sci. 50(11), 3123–3130 (2011)

    Article  CAS  Google Scholar 

  53. N. Erum, M.A. Iqbal, First principles investigation of fluorine based strontium series of perovskites. Commun. Theor. Phys. 66(5), 571 (2016)

    Article  ADS  CAS  Google Scholar 

  54. H. Titrian, U. Aydin, M. Friák, D. Ma, Self-consistent scale-bridging approach to compute the elasticity of multi-phase polycrystalline materials. MRS Online Proc. Librar. 1524, 301–307 (2013)

    Article  Google Scholar 

  55. M. Friák, W.A. Counts, D. Ma, B. Sander, D. Holec, Theory-guided materials design of multi-phase Ti-Nb alloys with bone-matching elastic properties. Materials 5(10), 1853–1872 (2012)

    Article  ADS  PubMed Central  Google Scholar 

  56. L.-F. Zhu, M. Friák, L. Lymperakis, H. Titrian, U. Aydin, A.M. Janus, H.-O. Fabritius et al., Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals. J. Mech. Behav. Biomed. Mater. 20, 296–304 (2013)

    Article  CAS  PubMed  Google Scholar 

  57. M. Faizan, K.C. Bhamu, G. Murtaza, X. He, N. Kulhari, Electronic and optical properties of vacancy ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; and X = Cl, Br, I): a first principles study.  Sci. Rep. 11(1), 6965 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. F. Elfatouaki, O. Farkad, R. Takassa, S. Hassine, O. Choukri, A. Ouahdani, E.A. Ibnouelghazi, D. Abouelaoualim, A. Outzourhit, Optoelectronic and thermoelectric properties of double halide perovskite Cs2AgBiI6 for renewable energy devices. Sol. Energy 260, 1–10 (2023)

    Article  ADS  CAS  Google Scholar 

  59. A.V. Rodina, M. Dietrich, A. Göldner, L. Eckey, A. Hoffmann, A.L. Efros, M. Rosen, Free excitons in wurtzite GaN. Phys. Rev. B 64(11), 115204 (2001)

    Article  ADS  Google Scholar 

  60. M.A. Fadla, B. Bentria, T. Dahame, First-principles investigation on the stability and material properties of all-inorganic cesium lead iodide perovskites CsPbI3 polymorphs. Phys. B Condens. Matter 585, 412118 (2020)

    Article  CAS  Google Scholar 

  61. U.-G. Jong, K. Yun-Hyok et al., Computational prediction of structurlectronic, and optical properties and phase stability of double perovskites K2SnX6 (X = I, Br, Cl). RSC Adv. 10(1), 201–209 (2020)

    Article  ADS  CAS  Google Scholar 

  62. M. Nabi, T.M. Bhat, D.C. Gupta, Effect of pressure on electronic, magnetic, thermodynamic, and thermoelectric properties of tantalum-based double perovskites Ba2MTaO6 (M = Mn, Cr). Int. J. Energy Res. 43(9), 4229–4242 (2019)

    Article  CAS  Google Scholar 

  63. M.U. Din, M. Ain, M. Yousaf, J. Munir, Structural, elastic, electronic, optical and thermoelectric response of lead-free double perovskite Rb2TlInX6 (X = Cl, I) for energy storage devices: DFT + SOC investigations. Mater. Sci. Semiconduct. Process. 152, 107081 (2022)

    Article  CAS  Google Scholar 

  64. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128(5), 2093 (1962)

    Article  ADS  CAS  Google Scholar 

  65. Q. Mahmood, T. Ghrib, A. Rached, A. Laref, M.A. Kamran, Probing of mechanical, optical and thermoelectric characteristics of double perovskites Cs2GeCl/Br6 by DFT method. Mater. Sci. Semiconduct. Process. 112, 105009 (2020)

    Article  CAS  Google Scholar 

  66. M. Hassan, A. Shahid, Q.J.S.S.C. Mahmood, Structural, electronic, optical and thermoelectric investigations of antiperovskites A3SnO (A = Ca, Sr, Ba) using density functional theory. Solid State Commun. 270, 92–98 (2018)

    Article  ADS  CAS  Google Scholar 

  67. Q. Mahmood, M. Hassan, K.C. Bhamu, M. Yaseen, S.M. Ramay, A. Mahmood, Density functional theory-based study of the magnetic and optical properties of PbMO3 (M = Cr, Fe) using the modified BeckeJohnson mBJ functional. J. Phys. Chem. Solids 128, 275–282 (2019)

    Article  ADS  CAS  Google Scholar 

  68. M. Rashid, F. Aziz, Q. Mahmood, N.A. Kattan, A. Laref, Pressure-induced modifications in the optoelectronic and thermoelectric properties of MgHfO3 for renewable energy applications. Arab. J. Sci. Eng. 1:9 (2021)

    Google Scholar 

  69. M. Yaseen, M.K. Butt, A. Ashfaq, J. Iqbal, M.M. Almoneef, M. Iqbal, A. Murtaza, A. Laref, Phase transition and thermoelectric properties of cubic KNbO3 under pressure: DFT approach. J. Mater. Res. Technol. 11, 2106–2113 (2021)

    Article  CAS  Google Scholar 

  70. X. Zhang, Z. Li-Dong, Thermoelectric materials: energy conversion between heat and electricity. J. Materiomics 1(2), 92–105 (2015)

    Article  Google Scholar 

  71. R. Haleoot, Thermodynamic and thermoelectric properties of CoFeYGe (Y = Ti, Cr) quaternary heusler alloys: first principle calculations. J. Phys. Condens. Matter 32(7), 075402 (2019)

    Article  ADS  PubMed  Google Scholar 

  72. S.A. Mir, D.C. Gupta, crutinizing the stability and exploring the dependence of thermoelectric properties on band structure of 3 d-3 d metal-based double perovskites Ba2FeNiO6 and Ba2CoNiO6. Sci. Rep. 11(1), 10506 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University (Abha, Saudi Arabia) for funding this work through the Research Groups Program under grant number (RGP.2/60/44).

Funding

The funding source is not available.

Author information

Authors and Affiliations

Authors

Contributions

AA: Investigation; visualization; writing original draft; GM: Supervision; conceptualization; AU: review and editing; Investigation; NS: Software Facilities; ASAl: Review and editing; Methodology; SS: Calculations; UA: Investigation.

Corresponding authors

Correspondence to Ahmad Ayyaz or G. Murtaza.

Ethics declarations

Competing interest

The authors confirm that they do not possess any identifiable conflicting financial interests or personal affiliations that may have potentially influenced the findings presented in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyaz, A., Murtaza, G., Usman, A. et al. Evaluation of Physical Properties of A2ScCuCl6 (A = K, Rb, and Cs) Double Perovskites via DFT Framework. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03018-2

Keywords

Navigation